
1

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors

Conference on Modelling Fluid Flow (CMFF’25)

The 19th International Conference on Fluid Flow Technologies

Budapest, Hungary, August 26 - August 29, 2025

USING JACOBI METHOD TO SOLVE THE TWO-EQUATION TURBULENCE

MODEL FOR PARALLELIZATION ON GPU COMPUTING SYSTEM

Ivan TOMANOVIĆ1, Srdjan BELOŠEVIĆ2, Nenad CRNOMARKOVIĆ3,
Aleksandar MILIĆEVIĆ4

1 Corresponding Author. Department of Thermal Engineering and Energy, “VINČA” Institute of Nuclear Sciences – National Institute of

the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12–14, 11351 Vinča, PO Box 522, Belgrade, 11001 Serbia. Tel.:

+381 11 3408551, E-mail: ivan.tomanovic@vin.bg.ac.rs
2 Department of Thermal Engineering and Energy, “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia,

University of Belgrade, Mike Petrovića Alasa 12–14, 11351 Vinča, PO Box 522, Belgrade, 11001 Serbia. E-mail: v1belose@vin.bg.ac.rs
3 Department of Thermal Engineering and Energy, “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia,

University of Belgrade, Mike Petrovića Alasa 12–14, 11351 Vinča, PO Box 522, Belgrade, 11001 Serbia. E-mail: ncrni@vin.bg.ac.rs
4 Department of Thermal Engineering and Energy, “VINČA” Institute of Nuclear Sciences – National Institute of the Republic of Serbia,
University of Belgrade, Mike Petrovića Alasa 12–14, 11351 Vinča, PO Box 522, Belgrade, 11001 Serbia. E-mail: amilicevic@vin.bg.ac.rs

ABSTRACT

The advancement in computer development in

recent years saw introduction of powerful graphics

processing units (GPUs) intended as general-purpose

computation units, beside their core purpose. To

better accommodate the existing computational fluid

dynamics (CFD) code with a k-ε turbulence model to

be able to run on an upcoming generation of GPUs,

the existing computer codes must undergo

modifications due to very different nature of GPU

architecture, compared to that of a central processing

unit (CPU). Due to this, a Jacobi method is used

instead of Gauss-Seidel based solvers. Application

of Jacobi on a CPU predictably leads to a slower

execution of code, due to its slower convergence

rate. However, its highly parallel nature makes it

very suitable for execution on modern GPU. The

subroutines both for kinetic energy and its

dissipation rate originally use Gauss-seidel based

tridiagonal matrix algorithm (TDMA) solver, highly

optimized to run on a single computational thread.

While it can be modified to run on multiple

computational threads, it scales poorly with their

number increase. On the other hand, Jacobi offers

full parallelism, and simple code implementation,

regardless of the problem scale, avoiding conflicting

memory operations at the same time, but at the cost

of double memory consumption. The code itself is

ported to GPU using OpenACC directives in

compute unified device architecture (CUDA)

FORTRAN. The 2D monophase turbulence flow

test-case is solved on an orthogonal structured grid,

and the parallel nature of Jacobi gives us the ability

to solve equations in each control volume

individually between the iteration steps, without

dependencies on neighbouring cells, leading to a

significant number of operations that can be executed

in parallel. Due to initial memory operations

overhead cost in time, the model must solve

sufficiently large problem to be able to outperform

fast CPU.

Keywords: CFD, GPU, Jacobi method,

OpenACC, parallelization, turbulence

NOMENCLATURE

CLK [Hz] single processing unit clock speed

E [-] per core efficiency

n [-] input size of problem

p [-] number of processing units

S [-] speedup of the parallel algorithm

T(n) [-] total operations count

t [s] execution time

Subscripts and Superscripts

b, base base (reference) case/value

overhead overhead time or operations

parallel executed in parallel

rw real-world conditions

serial executed in serial

1. INTRODUCTION

Application of turbulence models in CFD

research demands a significant amount of high-

performance computational resources. Past century

brought us vast number of models specifically

created and well optimized to run on single core

processing units. Together with those codes less

frequently were developed models intended to run on

proprietary super computers, often closed to public.

Development of computer graphics lead to creation

of powerful GPU devices that could readily perform

2

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors

operations beyond their intended purpose, and found

their place in scientific computing. Understanding

the potential of GPUs as very new and promising

accelerators that can be used in computational

research is essential, as they are being developed at

high pace, and thus it is of great importance to create

highly efficient computer codes that would follow.

The historical development of CFD codes and

more importantly, the equation solvers in them

followed the development of both personal and HPC

computers, starting with the single core codes

implementing the tridiagonal matrix algorithm

(TDMA) e.g. [1] and Stone’s SIP algorithm [2], as

well as the parallel implementations of those on

multicore CPUs: [3, 4]. Other solvers that include

domain decompositions [5, 6], Cyclic Reduction

(CR) and Parallel Cyclic Reduction (PCR) [7],

Multi-Grid (MG), Colour Checkerboarding (CC) [8],

Alternating-Direction Implicit (ADI) [9], and others

followed the increase in core count on personal

computers, and the early versions of GPUs as well,

providing mixed results and success, but often fast

solvers that have their own limitations.

The languages initially developed for GPUs,

such as OpenCL and CUDA C, provided users with

access to their capabilities, but at a cost of a very long

learning curve in order to provide good working and

well optimized codes. An easier tool that would

move burden of sometimes difficult code writing and

memory management from the user to the machine

was needed, and it came in the form of OpenACC,

providing wider audience with access to GPU device

performance, while maintaining simplicity in code

writing. A good example of difficulties that had to be

overcome when writing codes from scratch can be

found in work of Cohen and Molemaker [10] who

created a massively parallel GPU implementation of

fast CFD code for simulation of Rayleigh-Bérnard

convection. Creation of such a code in native GPU

language, such as CUDA C, is labour intensive task.

On the other hand, OpenACC implementations of

code nowadays can provide similar performance

gains without requiring the user to tackle difficult

tasks, including the load distribution and memory

management. One of such implementations is by Xia

et al. [11] who discussed the conversion of legacy

CFD solvers to new hardware, and also presented a

model of compressible CFD code implemented on

unstructured grid using OpenACC.

Our own implementation is based off TEACH-T

CFD code [12], converting and modifying it to allow

massive parallelisation of all parts of the code. The

turbulence in code is modelled using a well-known

k-ε two equation model, and the implementation is

done so that the turbulent kinetic energy equation is

solved first, due to internal dependencies in the

model itself. The entire CFD solver is ported to the

GPU to avoid massive overhead times caused by data

movements through the PCI-E lanes.

Amongst other changes to the code structure,

one of the most important changes in this code is the

inclusion of Jacobi based solver for equations,

allowing future massive parallelization of code as the

GPU computational cores number grows, and at the

same time providing noticeable gains at current

architecture. While the Jacobi implementation does

have its own disadvantages on real-world parallel

machines, most important the double memory

consumption, and potentially slower convergence on

machines with finite number of cores, it can still be

the best choice for the newer machines that often

have core count proportional to the size of problem

solved, as these machines are moving closer to ideal

parallel machines. This is also supported by findings

of Tsitsiklis [13] who proves that parallel Jacobi

iterations are no slower than any parallel Gauss-

Seidel variant of that iteration, confirming the almost

certain superiority of Jacobi algorithm over Gauss-

Seidel [14]. On GPUs with lower computational core

counts and low amount of available memory a good

compromise could be the use of Red-Black

checkerboarding in one or more directions, which is

a version of Colour Checkerboarding algorithm, but

is not considered as part of this work.

In this work we put our focus on determining the

number of computational operations in subroutine

for turbulent kinetic energy, setting aside other

subroutines, and we use this information to

determine potential for speedup of parallel code

based on theoretical background set by Amdahl [15]

and Gustafson [16]. Tasks in this work are separated

to determination of total number of operations in

serial code, grouping them in sections that can be

parallelized, determining potential sections of code

that can be asynchronously executed, upon which we

can determine total number of steps on ideal parallel

machine. Once these tasks are complete, we turn

towards determination of the computational core

number-based operation count, which is informative,

but insufficient to provide real-world performance

benchmarks. To gain insights into the code

behaviour on real hardware, we set a base case that

should be used as a ground-line benchmark for

performance estimation over several grid sizes. We

use running time as a reference and convert the

operation count criteria into a running time criteria to

provide a fair comparison between different

platforms. This approach takes into account real-

world overhead times, which, as shown, are

significant for GPU-based CFD simulation

platforms.

2. CODE IMPLEMENTATION

In order to accommodate CFD code with a k-ε

turbulence model to run on GPU, an existing code is

modified due to different nature of GPU architecture

compared to CPU. A 2D monophase turbulence flow

test case is solved on an orthogonal structured grid.

Instead of Gauss-Seidel the Jacobi method is used,

3

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors

enabling solving the equations in each control

volume with no influence of neighbouring cells, thus

offers parallelization potential. The code is ported to

GPU by OpenACC directives in CUDA FORTRAN.

Parallelisation of this 2D code opens direct

pathway towards creation of parallel 3D codes.

Major change to a code would be an introduction of

subroutine that would solve the third component of

the velocity. Also, given that there are three

dimensions it would lead to addition of k loop in

most cases, and increased number of operations

where new terms and variables are introduced in

equations.

A code structure extracted from subroutine used

for calculation of turbulent kinetic energy is given in

Table 1, accompanied by the number of

computational and memory access operations at

every group of lines. The number of operations here

is determined based on total arithmetic operations at

the line/segment of code, as well as the memory read

and write operations that took place. It can be noticed

that many operations are enclosed in loops, thus

increasing the number of operations depending on

the loop size. The total number of operations, as can

be noticed, depends on the problem size, but it can

be estimated roughly for known size of

computational domain. For example, the first loop

over interior grid has in single pass total of 113

computational operations, that needed 109 memory

reads, and wrote to the memory total of 29 times, but

this is repeated (nj-2)(ni-2) times in total. Sample

number of operations for different grid sizes is given

in Table 2. In all cases number of swipes (nswp),

which tells us how many times Jacobi solver loop is

repeated in each iteration step, is assumed 30.

Table 1. Number of computational and memory

operations in subroutine for turbulent energy

Pseudo code calculation memory

 read write

loop over interior grid

for j = 2 to nj – 1

 for i = 2 to ni – 1

 calculate areas 3 6 3

 calculate volume 2 3 1

 calculate conv. coef. 16 16 4

 calculate diff. coef. 20 20 4

 calculate source terms 61 59 11

 update source terms 11 15 6

 end

end

in total: (nj – 2)(ni – 2) 113 109 29

wall conditions: top wall

initial ops 1 3 2

for i = 2 to ni – 1

 calculate y+ 7 9 3

 update source terms 31 34 3

end

in total: (ni – 2) 38 43 6

: side wall

for j = jstp to nj – 1

 calculate y+ 7 9 3

 update source terms 31 34 3

end

in total: (nj – jstp) 38 43 6

: symmetry axis

for i = 2 to ni – 1

 calculate source terms 15 22 9

 update source terms 2 3 2

end

in total: (ni – 2) 17 25 11

res. and under-relaxation

for j = 2 to nj – 1

 for i = 2 to ni – 1

 calculate ap,te 4 5 1

 calculate residual 10 11 1

 calculate under-relax. 4 6 1

 end

end

in total: (nj – 2)(ni – 2) 18 22 3

iterative solver loop

for swipe = 1 to nswp

 for j = 2 to nj – 1

 for i = 2 to ni – 1

 calculate tenew 13 13 1

 update residual 3 4 2

 end

 end

 for j = 2 to nj – 1

 for i = 2 to ni – 1

 calculate tenew 0 1 1

 end

 end

in total:

n (nj – 2)(ni – 2)

16 18 4

Table 2. Estimated number of serial operations

Tserial(n) for different grid sizes

Grid calculation Memory access

 read write

32×16 2.6105 2.8105 6.4105

64×32 1.1106 1.3106 2.8105

128×64 4.8106 5.3106 1.2106

256×128 2.0107 2.1107 4.9106

512×256 7.9107 8.7107 2.0107

1024×512 3.2108 3.5108 7.9107

2048×1024 1.3109 1.4109 3.2108

4096×2048 5.1109 5.6109 1.3109

From this table we can see that the number of

calculation operations grows from 2.6105 all the way

to 5.1109 as the grid size grows from 32×16=512

elements to 4096×2048=8.4106 elements. Most of

these operations are contained in loops that can be

readily parallelised, and as such contribute to

significant reduction in number of operations when

the parallelisation is introduced. The rough

estimation of number of parallel operations on an

ideal parallel machine is Tparallel(n) = 106 (due to

4

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors

some parts of loops, or entire loops being able to

execute asynchronously (i.e. parallel one to another),

taking into account 16 successive parallel operations

that include massive arrays inside the loops that can

be executed in parallel, 3 operations on arrays that

execute in series, 30 times each, as well as internal

dependencies that enforce us to wait for computation

of some variables before we are able to compute

others.

3. CODE SPEEDUP AND EFFICIENCY

In theory, a proper way to estimate algorithm

speedup and efficiency is to define the number of

operations T(n) executed to solve the problem of

given size n. From here we can estimate the number

of parallel operations necessary to reach the same

solution under ideal conditions, with finite number

of computational units, based on considerations

brought by Amdahl [15]:

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛) =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
 (1)

This is true for each and every loop found in the

problem we solve if it is readily parallelizable, and if

we consider execution on an ideal parallel machine.

As an example, we will apply Eq. (1) to the

calculation operations from Table 2, and compare

data between the parallel CPU (Intel Xeon E5-1620

v3) with 8 threads against the GPU (NVIDIA Quadro

RTX 4000) with 2304 cores. The Tparallel(n) for both

is given in Table 3, but it must be noted that this

value reflects purely theoretical performance and it

ignores overhead times necessary for load

distribution, memory transfer times when

simulations are done on GPU, other operational

overheads, as well as the individual core

performance (core speed, amount of available cache,

bandwidth, etc.).

Table 3. Estimated number of computational

operations Tparallel(n) for different accelerators

Grid size p = 8 (CPU) p = 2304 (GPU)

32×16 3.2104 1.1102

64×32 1.4105 5.0102

128×64 6.0105 2.1103

256×128 2.4106 8.5103

512×256 9.9106 3.4104

1024×512 4.0107 1.4105

2048×1024 1.6108 5.5105

4096×2048 6.4108 2.2106

Given that both parallel CPUs and GPUs are not

the ideal machines, they need additional resources to

communicate, distribute and balance the load over

their respective computational cores. This leads to

the introduction of additional overhead operations,

caused by additional communication and memory

management, especially if we take into account

memory transfers that are unavoidable in CPU-GPU

communication in real-world runs, as an expansion

of Amdahl’s law by Gustafson [16], Eq. (2):

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛) =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
+ 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (2)

As the complexity of code structure increases it

becomes more difficult to accurately estimate the

number of operations. Also, in Eqs. (1) and (2) it is

noticeable that if the T(n) is less or equal to the

number of processing units we can get the number of

parallel operations smaller than 1, which is

impossible, and such cases rather tend to have

smallest, but finite number of operations that should

be determined by estimating the number of parallel

computation steps. While the total number of

operations remain the same between serial and

parallel codes, the number of execution steps is

usually reduced as the parallelism is introduced,

virtually converting a large number of steps found in

parts of serial code to a single step on massively

parallel machine. However, we still have to follow

some execution thread, given that prior to executing

some operations others must complete, creating a

new kind of overhead that adds to previous, and a

new issue in operation counting to overcome these

issues, it would be easier to measure execution time,

instead of operation counts in real life codes.

Furthermore, the physical differences in

performance of different accelerators include

additional challenges when estimating the

performance originating from individual processing

unit and memory speed. Those could be partially

addressed by expressing the Tparallel,rw(n) as a

function of those variables, by expressing

performance per normalised processing unit speed:

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛) =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
∙
𝐶𝐿𝐾𝑏𝑎𝑠𝑒
𝐶𝐿𝐾

+ 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑

(3)

On the other hand, the execution time as a

measurable output, takes into account all overheads,

without focusing on them individually, as well as the

hardware constraints that include clock and memory

speeds, limitations in bandwidth, and all other

influences that occur, thus making it an indicator that

is easier to measure. We can in a similar manner

estimate the execution time that should be expected

from an ideal parallel machine, based on its number

of processors:

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛) =
𝑡𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
 (4)

Also, in the similar manner we can include

overhead time to this equation:

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛) =
𝑡𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
+ 𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (5)

It is important to note that, the parallel execution

time expressed in this manner is the time per

processing unit found in accelerator (parallel CPU or

GPU), and as such has similar limitations as the

number of operations from Eq. (3).

The overhead time, as a difference between real-

world and ideal runs, can be determined by

5

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors

comparing the actual measured execution time in real

world runs to that obtained from Eq. (4), giving us

the following:

𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛)

− 𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛)
(6)

To effectively estimate both the speedup and

efficiency of parallel execution on parallel CPU and

GPU we need a solid baseline case that will serve as

a reference. To this end we will utilize a code

compiled for a single threaded run with same Jacobi

algorithm, with all compiler optimizations applied.

This will give us an insight into an actual execution

time which we will denote as tserial,CPU(n) in analysis.

From this t(n) we will determine tparallel,CPU(n) and

tparallel,GPU(n) using the Eq. (4). The number of

processing units/threads p for CPU and GPU used in

simulations is 8 and 2304, respectively.

The speedup of the parallel algorithm, both

theoretical and real-world, can be determined by

comparing it to its serial counterpart, per Eqs. (7) and

(8):

𝑆(𝑝) =
𝑡𝑠𝑒𝑟𝑖𝑎𝑙,𝑏(𝑛)

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛)
 (7)

𝑆𝑟𝑤(𝑝) =
𝑡𝑠𝑒𝑟𝑖𝑎𝑙,𝑏(𝑛)

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛)
 (8)

Expressing the speedup over the available

number of processing units provides us with an

insight into the efficiency of parallelization, Eqs. (9)

and (10), where values E ≈ 1 indicate highly efficient

parallelization, while the values of E ≪ 1 indicate

significant slowdowns due to overhead or

insufficient utilization of individual processing units,

this is in relation to the findings of Hill and Marty

[17] who shown that locally inefficient core design

can be globally efficient at large scale.

𝐸(𝑝) =
𝑆(𝑝)

𝑝
 (9)

𝐸𝑟𝑤(𝑝) =
𝑆𝑟𝑤(𝑝)

𝑝
 (10)

Results for simulations of turbulent flow model

in 2D channel on parallel CPU and GPU, using

Jacobi model to solve equations are given in Tables

(4) and (5). Test cases are named after the accelerator

used and number of cells in simulation grid for that

case. All test case times are given for 20 000

iterations with double precision floating point

numbers on numerical grids consisting of 8192 (8k),

23768 (32k), 131072 (131k), 524288 (524k),

2097152 (2M), and 8388608 (8M) elements. From

the Table 4 it is noticeable that there is significant

growth in overhead execution time for the parallel

CPU execution. The growth in the overhead time

with the grid size for the GPU is significantly lower,

but it makes nearly entire difference between real-

world and ideal parallel execution.

From these results, we notice that expected

parallel execution times, using above Eqs. are

significantly lower than the real-world performance.

This is something that can’t be avoided, but can be

reduced by proper hardware selection and different

solver choices depending on the scale of the problem.

Table 4. Simulation times and overhead times

CASE tserial,b tparallel tparallel,rw toverhead

Eq. (4) (6)

CPU8k 25.8 3.22 11.41 8.19

CPU32k 152.4 19.05 57.37 38.32

CPU131k 722.5 90.32 301.45 211.13

CPU524k 5860.5 732.56 4197.20 3464.63

CPU2M 25327.4 3165.93 23675.66 20509.73

CPU8M 120473.7 15059.21 82879.52 67820.31

GPU8k 25.8 0.011 92.50 92.49

GPU32k 152.4 0.066 125.73 125.66

GPU131k 722.5 0.313 158.14 157.82

GPU524k 5860.5 2.544 413.59 411.05

GPU2M 25327.4 10.993 1410.14 1399.15

GPU8M 120473.7 52.289 5366.13 5313.84

Following the results from the Table 4 speedup

and computational efficiency of each test case is

calculated. Results provided in Table 5 indicate that

at larger grid sizes GPU can provide significant

speedup in real-world conditions, providing real

world benefits to the user. However, efficiency of the

parallelisation from the same table indicates a very

high overhead on GPU.

Table 5. Speedup and per core efficiency

CASE S(p) Srw(p) E(p) Erw(p)

Eq. (7) (8) (9) (10)

CPU8k 8 2.26 1 0.28

CPU32k “ 2.66 “ 0.33

CPU131k “ 2.40 “ 0.30

CPU524k “ 1.40 “ 0.17

CPU2M “ 1.07 “ 0.13

CPU8M “ 1.45 “ 0.18

GPU8k 2304 0.28 “ 0.000121

GPU32k “ 1.21 “ 0.000526

GPU131k “ 4.57 “ 0.001983

GPU524k “ 14.17 “ 0.006150

GPU2M “ 17.96 “ 0.007796

GPU8M “ 22.45 “ 0,009744

It can be seen that the increase of grid size

significantly reduces computational capabilities of

parallel CPU, leading to a lower speedup

performance over the base case after certain grid

size, as well as to a drop in per core efficiency at the

same time. However, on the GPU, the speedup is

generally increasing with the grid size, and it should

follow that trend until the physical limitations of the

hardware are met. At the same time, we can notice

significant rise in per core efficiency, even though its

value remains very low, indicating the

underutilization of computational resources and the

existence of a significant overhead.

6

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors

4. SUMMARY

A CFD code with a two-equation turbulence

model was modified to run on GPU architecture.

Monophase 2D turbulence flow test case was solved

on an orthogonal structured grid, while the Jacobi

solver is used for efficient parallelization. The code

speedup and computational efficiency were analysed

over the grid size and compared between parallel and

serial execution of the code, both on CPU and GPU.

A significant disparity between results that can

be expected in theory, and the ones obtained by

solving the real-world problems that include

turbulence modelling on parallel machines was

observable. While the majority of the work executed

can be readily parallelized, and the number of

operations can in theory drop to a value close to 106

(for ideal parallel machine), in reality different kinds

of overhead become an issue for performance, and as

such significantly overload accelerators leading to

slower than expected execution of programs.

Even though the existing accelerators do suffer

from issues caused by different overheads, real-

world performance improvements are noticeable,

and they outperform each other at different problem

sizes.

The use of Jacobi solver has potential on both

current and upcoming GPU and similarly structured

accelerators/platforms, due to its low number of

operations, even though it is the slowest to converge

to a solution, and takes double memory space. An

alternative to it would be the implementation of red-

black Gauss-Seidel algorithm, using less space, but

operating only on one half of the problem per

dimension of array, to avoid recursive dependencies

that would prevent the parallelization.

Considering the implementation from the aspect

of speedup and per core computational efficiency, it

is noticeable that both parallel CPU and GPU

outperform single core CPU by a significant amount.

However, the speedup factor for parallel CPU slowly

drops as the problem size increases. On the other

hand, the speedup factor of GPU grows with the

problem size at larger scales, and should keep

growing until it meets hardware limitations.

Efficiency-wise this parallel CPU shown highest

value in cases CPU32k and CPU131k with a value

over 0.30. Above those cases efficiency slowly

drops. On the other hand, GPU efficiency per core is

very low, in range of 10-3, but it constantly grows,

and we must keep in mind that these computational

nodes (CPU and GPU cores) use significantly

different amounts of power.

An average CPU core consumption is around 5-

15W, or even high as 20-30W per core depending on

its purpose and generation, while the GPU cores stay

around 10-30mW power per core, leading to values

for our devices that would fit range of 80-120W for

CPU (total power 140W) and 45-70W for GPU for

all CUDA cores (total power 160W). From this a

power consumption per run in case CPU524k would

be around 0.163 kWh, and similar case GPU524k

will be in the range of 0.018 kWh on a GPU based

accelerator.

The real-world performance of GPU depends on

its characteristics. While the available number of

computational cores is significant factor, major

problems and performance losses come from the

architecture of Streaming Multiprocessors and

different Compute Capability versions, with

significant differences in ability to manage memory,

schedule tasks, locally store data, or utilize some

other special functions. Even though improper

coding for targeted family of GPUs leads to

performance penalties, noticeable issues come from

the outside parameters – PCIe lane size, causing the

very slow data movements between CPU and GPU.

As said, current CPU-GPU architecture is very

limited considering the data movements between

CPU and GPU, creating inevitable overhead delays.

These problems should be overcome as the new

architectures and improvements to the existing ones

are introduced, as well as their availability and

affordability grows on the market. Some of

promising current/future platforms/architectures for

development of highly parallel CFD applications

such as NVIDIA’s Grace Hopper and Grace

Blackwell, or the recently announced AMD CPUs

with NPU Ryzen AI Max+ 395 should reach wider

market in the following years. OpenACC expansion

to those accelerators should follow, providing

smooth and practical transition of existing codes to

these new platforms with higher memory bandwidth,

capacity and raw computational power.

ACKNOWLEDGEMENTS

This work has been supported by the Ministry of

Science, Technological Development and

Innovation of the Republic of Serbia (Contract

Annex: 451-03-136/2025-03/ 200017).

REFERENCES

[1] Ferziger, J. H., Perić, M., and Street, R. L., 2020,

Computational Methods for Fluid Dynamics

(4th ed.), Springer International Publishing,

Cham.

[2] Stone, H. L., 1968, "Iterative Solution of

Implicit Approximations of Multidimensional

Partial Differential Equations", SIAM J Numer

Anal, Vol. 5, pp. 530–558.

[3] Reeve, J. S., Scurr, A. D., and Merlin, J. H.,

2001, "Parallel versions of Stone’s strongly

implicit algorithm", Concurr Comput, Vol. 13,

pp. 1049–1062.

[4] Chathalingath, A., and Manoharan, A., 2019,

"Performance Optimization of Tridiagonal

Matrix Algorithm [TDMA] on Multicore

Architectures", International Journal of Grid

7

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors

and High Performance Computing, Vol. 11, pp.

1–12.

[5] Ahmadi, A., Manganiello, F., Khademi, A., and

Smith, M. C., 2021, "A Parallel Jacobi-

Embedded Gauss-Seidel Method", IEEE

Transactions on Parallel and Distributed

Systems, Vol. 32, pp. 1452–1464.

[6] Amritkar, A., Tafti, D., Liu, R., Kufrin, R., and

Chapman, B., 2012, "OpenMP parallelism for

fluid and fluid-particulate systems", Parallel

Comput, Vol. 38, pp. 501–517.

[7] Souri, M., Akbarzadeh, P., and Mahmoodi

Darian, H., 2020, "Parallel Thomas approach

development for solving tridiagonal systems in

GPU programming − steady and unsteady flow

simulation", Mechanics & Industry, Vol. 21, p.

303.

[8] Parker, J. T., Hill, P. A., Dickinson, D., and

Dudson, B. D., 2022, "Parallel tridiagonal

matrix inversion with a hybrid multigrid-

Thomas algorithm method", J Comput Appl

Math, Vol. 399, p. 113706.

[9] Wei, Z., Jang, B., Zhang, Y., and Jia, Y., 2013,

"Parallelizing Alternating Direction Implicit

Solver on GPUs", Procedia Comput Sci, Vol. 18,

pp. 389–398.

[10] Cohen, J. M., and Molemaker, J., 2009, "A Fast

Double Precision CFD Code using CUDA", J

Physical Soc Japan, Vol. 1, pp. 237–341.

[11] Xia, Y., Lou, J., Luo, H., Edwards, J., and

Mueller, F., 2015, "OpenACC acceleration of an

unstructured CFD solver based on a

reconstructed discontinuous Galerkin method

for compressible flows", Int J Numer Methods

Fluids, Vol. 78, pp. 123–139.

[12] Tomanović, I., Belošević, S., Milićević, A.,

Crnomarković, N., Stojanović, A., Deng, L., and

Che, D., 2024, "CFD Code Parallelization on

GPU and the Code Portability", Adv Theory

Simul, p. 2400629.

[13] Tsitsiklis, J. N., 1989, "A Comparison of Jacobi

and Gauss-Seidel Parallel Iterations", Appl Math

Left, Vol. 2, pp. 167–170.

[14] Smart, D., and White, J., 1988, "Reducing the

Parallel Solution Time of Sparse Circuit

Matrices Using Reordered Gaussian

Elimination and Relaxation", VLSI Memo No.

88-440, Massachusetts Institute of Technology.

[15] Gene, D. R., and Amdahl, M., n.d."Validity of

the single processor approach to achieving large

scale computing capabilities", Spring Joint

Computer Conference, Atlantic City, New

Jersey., 483–485.

[16] Gustafson, J. L., n.d."REEVALUATING

AMDAHL’S LAW", Commun ACM, Vol. 31,

pp. 532–533.

[17] Hill, M. D., and Marty, M. R., 2007, "Amdahl’s

Law in the Multicore Era", Technical Report

#1593, University of Wisconsin-Madison.

