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ABSTRACT 

The advancement in computer development in 

recent years saw introduction of powerful graphics 

processing units (GPUs) intended as general-purpose 

computation units, beside their core purpose. To 

better accommodate the existing computational fluid 

dynamics (CFD) code with a k-ε turbulence model to 

be able to run on an upcoming generation of GPUs, 

the existing computer codes must undergo 

modifications due to very different nature of GPU 

architecture, compared to that of a central processing 

unit (CPU). Due to this, a Jacobi method is used 

instead of Gauss-Seidel based solvers. Application 

of Jacobi on a CPU predictably leads to a slower 

execution of code, due to its slower convergence 

rate. However, its highly parallel nature makes it 

very suitable for execution on modern GPU. The 

subroutines both for kinetic energy and its 

dissipation rate originally use Gauss-seidel based 

tridiagonal matrix algorithm (TDMA) solver, highly 

optimized to run on a single computational thread. 

While it can be modified to run on multiple 

computational threads, it scales poorly with their 

number increase. On the other hand, Jacobi offers 

full parallelism, and simple code implementation, 

regardless of the problem scale, avoiding conflicting 

memory operations at the same time, but at the cost 

of double memory consumption. The code itself is 

ported to GPU using OpenACC directives in 

compute unified device architecture (CUDA) 

FORTRAN. The 2D monophase turbulence flow 

test-case is solved on an orthogonal structured grid, 

and the parallel nature of Jacobi gives us the ability 

to solve equations in each control volume 

individually between the iteration steps, without 

dependencies on neighbouring cells, leading to a 

significant number of operations that can be executed 

in parallel. Due to initial memory operations 

overhead cost in time, the model must solve 

sufficiently large problem to be able to outperform 

fast CPU. 

Keywords: CFD, GPU, Jacobi method, 

OpenACC, parallelization, turbulence 

NOMENCLATURE 

CLK [Hz] single processing unit clock speed 

E [-] per core efficiency 

n [-] input size of problem 

p [-] number of processing units 

S [-] speedup of the parallel algorithm 

T(n) [-] total operations count 

t [s] execution time 

 

Subscripts and Superscripts 

b, base   base (reference) case/value 

overhead overhead time or operations 

parallel   executed in parallel 

rw  real-world conditions 

serial  executed in serial 

1. INTRODUCTION 

Application of turbulence models in CFD 

research demands a significant amount of high-

performance computational resources. Past century 

brought us vast number of models specifically 

created and well optimized to run on single core 

processing units. Together with those codes less 

frequently were developed models intended to run on 

proprietary super computers, often closed to public. 

Development of computer graphics lead to creation 

of powerful GPU devices that could readily perform 
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operations beyond their intended purpose, and found 

their place in scientific computing. Understanding 

the potential of GPUs as very new and promising 

accelerators that can be used in computational 

research is essential, as they are being developed at 

high pace, and thus it is of great importance to create 

highly efficient computer codes that would follow. 

The historical development of CFD codes and 

more importantly, the equation solvers in them 

followed the development of both personal and HPC 

computers, starting with the single core codes 

implementing the tridiagonal matrix algorithm 

(TDMA) e.g. [1] and Stone’s SIP algorithm [2], as 

well as the parallel implementations of those on 

multicore CPUs: [3, 4]. Other solvers that include 

domain decompositions [5, 6], Cyclic Reduction 

(CR) and Parallel Cyclic Reduction (PCR) [7], 

Multi-Grid (MG), Colour Checkerboarding (CC) [8], 

Alternating-Direction Implicit (ADI) [9], and others 

followed the increase in core count on personal 

computers, and the early versions of GPUs as well, 

providing mixed results and success, but often fast 

solvers that have their own limitations. 

The languages initially developed for GPUs, 

such as OpenCL and CUDA C, provided users with 

access to their capabilities, but at a cost of a very long 

learning curve in order to provide good working and 

well optimized codes. An easier tool that would 

move burden of sometimes difficult code writing and 

memory management from the user to the machine 

was needed, and it came in the form of OpenACC, 

providing wider audience with access to GPU device 

performance, while maintaining simplicity in code 

writing. A good example of difficulties that had to be 

overcome when writing codes from scratch can be 

found in work of Cohen and Molemaker [10] who 

created a massively parallel GPU implementation of 

fast CFD code for simulation of Rayleigh-Bérnard 

convection. Creation of such a code in native GPU 

language, such as CUDA C, is labour intensive task. 

On the other hand, OpenACC implementations of 

code nowadays can provide similar performance 

gains without requiring the user to tackle difficult 

tasks, including the load distribution and memory 

management. One of such implementations is by Xia 

et al. [11] who discussed the conversion of legacy 

CFD solvers to new hardware, and also presented a 

model of compressible CFD code implemented on 

unstructured grid using OpenACC. 

Our own implementation is based off TEACH-T 

CFD code [12], converting and modifying it to allow 

massive parallelisation of all parts of the code. The 

turbulence in code is modelled using a well-known 

k-ε two equation model, and the implementation is 

done so that the turbulent kinetic energy equation is 

solved first, due to internal dependencies in the 

model itself. The entire CFD solver is ported to the 

GPU to avoid massive overhead times caused by data 

movements through the PCI-E lanes. 

Amongst other changes to the code structure, 

one of the most important changes in this code is the 

inclusion of Jacobi based solver for equations, 

allowing future massive parallelization of code as the 

GPU computational cores number grows, and at the 

same time providing noticeable gains at current 

architecture. While the Jacobi implementation does 

have its own disadvantages on real-world parallel 

machines, most important the double memory 

consumption, and potentially slower convergence on 

machines with finite number of cores, it can still be 

the best choice for the newer machines that often 

have core count proportional to the size of problem 

solved, as these machines are moving closer to ideal 

parallel machines. This is also supported by findings 

of Tsitsiklis [13] who proves that parallel Jacobi 

iterations are no slower than any parallel Gauss-

Seidel variant of that iteration, confirming the almost 

certain superiority of Jacobi algorithm over Gauss-

Seidel [14]. On GPUs with lower computational core 

counts and low amount of available memory a good 

compromise could be the use of Red-Black 

checkerboarding in one or more directions, which is 

a version of Colour Checkerboarding algorithm, but 

is not considered as part of this work. 

In this work we put our focus on determining the 

number of computational operations in subroutine 

for turbulent kinetic energy, setting aside other 

subroutines, and we use this information to 

determine potential for speedup of parallel code 

based on theoretical background set by Amdahl [15] 

and Gustafson [16]. Tasks in this work are separated 

to determination of total number of operations in 

serial code, grouping them in sections that can be 

parallelized, determining potential sections of code 

that can be asynchronously executed, upon which we 

can determine total number of steps on ideal parallel 

machine. Once these tasks are complete, we turn 

towards determination of the computational core 

number-based operation count, which is informative, 

but insufficient to provide real-world performance 

benchmarks. To gain insights into the code 

behaviour on real hardware, we set a base case that 

should be used as a ground-line benchmark for 

performance estimation over several grid sizes. We 

use running time as a reference and convert the 

operation count criteria into a running time criteria to 

provide a fair comparison between different 

platforms. This approach takes into account real-

world overhead times, which, as shown, are 

significant for GPU-based CFD simulation 

platforms. 

2. CODE IMPLEMENTATION 

In order to accommodate CFD code with a k-ε 

turbulence model to run on GPU, an existing code is 

modified due to different nature of GPU architecture 

compared to CPU. A 2D monophase turbulence flow 

test case is solved on an orthogonal structured grid. 

Instead of Gauss-Seidel the Jacobi method is used, 
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enabling solving the equations in each control 

volume with no influence of neighbouring cells, thus 

offers parallelization potential. The code is ported to 

GPU by OpenACC directives in CUDA FORTRAN. 

Parallelisation of this 2D code opens direct 

pathway towards creation of parallel 3D codes. 

Major change to a code would be an introduction of 

subroutine that would solve the third component of 

the velocity. Also, given that there are three 

dimensions it would lead to addition of k loop in 

most cases, and increased number of operations 

where new terms and variables are introduced in 

equations. 

A code structure extracted from subroutine used 

for calculation of turbulent kinetic energy is given in 

Table 1, accompanied by the number of 

computational and memory access operations at 

every group of lines. The number of operations here 

is determined based on total arithmetic operations at 

the line/segment of code, as well as the memory read 

and write operations that took place. It can be noticed 

that many operations are enclosed in loops, thus 

increasing the number of operations depending on 

the loop size. The total number of operations, as can 

be noticed, depends on the problem size, but it can 

be estimated roughly for known size of 

computational domain. For example, the first loop 

over interior grid has in single pass total of 113 

computational operations, that needed 109 memory 

reads, and wrote to the memory total of 29 times, but 

this is repeated (nj-2)(ni-2) times in total. Sample 

number of operations for different grid sizes is given 

in Table 2. In all cases number of swipes (nswp), 

which tells us how many times Jacobi solver loop is 

repeated in each iteration step, is assumed 30. 

 

Table 1. Number of computational and memory 

operations in subroutine for turbulent energy  

Pseudo code calculation memory 

  read write 

loop over interior grid    

for j = 2 to nj – 1    

  for i = 2 to ni – 1    

    calculate areas 3 6 3 

    calculate volume 2 3 1 

    calculate conv. coef. 16 16 4 

    calculate diff. coef. 20 20 4 

    calculate source terms 61 59 11 

    update source terms 11 15 6 

  end    

end    

in total: (nj – 2)(ni – 2) 113 109 29 

    

wall conditions: top wall    

initial ops 1 3 2 

for i = 2 to ni – 1    

  calculate y+ 7 9 3 

  update source terms 31 34 3 

end    

in total: (ni – 2) 38 43 6 

: side wall    

for j = jstp to nj – 1    

  calculate y+ 7 9 3 

  update source terms 31 34 3 

end    

in total: (nj – jstp) 38 43 6 

: symmetry axis    

for i = 2 to ni – 1    

  calculate source terms 15 22 9 

  update source terms 2 3 2 

end    

in total: (ni – 2) 17 25 11 

    

res. and under-relaxation    

for j = 2 to nj – 1    

  for i = 2 to ni – 1    

    calculate ap,te 4 5 1 

    calculate residual 10 11 1 

    calculate under-relax. 4 6 1 

  end    

end    

in total: (nj – 2)(ni – 2) 18 22 3 

iterative solver loop    

for swipe = 1 to nswp    

  for j = 2 to nj – 1    

    for i = 2 to ni – 1    

      calculate tenew 13 13 1 

      update residual 3 4 2 

    end    

  end    

  for j = 2 to nj – 1    

    for i = 2 to ni – 1    

      calculate tenew 0 1 1 

    end    

  end    

in total: 

n (nj – 2)(ni – 2) 

16 18 4 

 

Table 2. Estimated number of serial operations 

Tserial(n) for different grid sizes 

Grid calculation Memory access 

  read write 

32×16 2.6105 2.8105 6.4105 

64×32 1.1106 1.3106 2.8105 

128×64 4.8106 5.3106 1.2106 

256×128 2.0107 2.1107 4.9106 

512×256 7.9107 8.7107 2.0107 

1024×512 3.2108 3.5108 7.9107 

2048×1024 1.3109 1.4109 3.2108 

4096×2048 5.1109 5.6109 1.3109 

 

From this table we can see that the number of 

calculation operations grows from 2.6105 all the way 

to 5.1109 as the grid size grows from 32×16=512 

elements to 4096×2048=8.4106 elements. Most of 

these operations are contained in loops that can be 

readily parallelised, and as such contribute to 

significant reduction in number of operations when 

the parallelisation is introduced. The rough 

estimation of number of parallel operations on an 

ideal parallel machine is Tparallel(n) = 106 (due to 
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some parts of loops, or entire loops being able to 

execute asynchronously (i.e. parallel one to another), 

taking into account 16 successive parallel operations 

that include massive arrays inside the loops that can 

be executed in parallel, 3 operations on arrays that 

execute in series, 30 times each, as well as internal 

dependencies that enforce us to wait for computation 

of some variables before we are able to compute 

others. 

3. CODE SPEEDUP AND EFFICIENCY 

In theory, a proper way to estimate algorithm 

speedup and efficiency is to define the number of 

operations T(n) executed to solve the problem of 

given size n. From here we can estimate the number 

of parallel operations necessary to reach the same 

solution under ideal conditions, with finite number 

of computational units, based on considerations 

brought by Amdahl [15]: 

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛) =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
 (1) 

This is true for each and every loop found in the 

problem we solve if it is readily parallelizable, and if 

we consider execution on an ideal parallel machine. 

As an example, we will apply Eq. (1) to the 

calculation operations from Table 2, and compare 

data between the parallel CPU (Intel Xeon E5-1620 

v3) with 8 threads against the GPU (NVIDIA Quadro 

RTX 4000) with 2304 cores.  The Tparallel(n) for both 

is given in Table 3, but it must be noted that this 

value reflects purely theoretical performance and it 

ignores overhead times necessary for load 

distribution, memory transfer times when 

simulations are done on GPU, other operational 

overheads, as well as the individual core 

performance (core speed, amount of available cache, 

bandwidth, etc.). 

Table 3. Estimated number of computational 

operations Tparallel(n) for different accelerators 

Grid size p = 8 (CPU) p = 2304 (GPU) 

32×16 3.2104 1.1102 

64×32 1.4105 5.0102 

128×64 6.0105 2.1103 

256×128 2.4106 8.5103 

512×256 9.9106 3.4104 

1024×512 4.0107 1.4105 

2048×1024 1.6108 5.5105 

4096×2048 6.4108 2.2106 

 

Given that both parallel CPUs and GPUs are not 

the ideal machines, they need additional resources to 

communicate, distribute and balance the load over 

their respective computational cores. This leads to 

the introduction of additional overhead operations, 

caused by additional communication and memory 

management, especially if we take into account 

memory transfers that are unavoidable in CPU-GPU 

communication in real-world runs, as an expansion 

of Amdahl’s law by Gustafson [16], Eq. (2): 

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛) =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
+ 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑  (2) 

As the complexity of code structure increases it 

becomes more difficult to accurately estimate the 

number of operations. Also, in Eqs. (1) and (2) it is 

noticeable that if the T(n) is less or equal to the 

number of processing units we can get the number of 

parallel operations smaller than 1, which is 

impossible, and such cases rather tend to have 

smallest, but finite number of operations that should 

be determined by estimating the number of parallel 

computation steps. While the total number of 

operations remain the same between serial and 

parallel codes, the number of execution steps is 

usually reduced as the parallelism is introduced, 

virtually converting a large number of steps found in 

parts of serial code to a single step on massively 

parallel machine. However, we still have to follow 

some execution thread, given that prior to executing 

some operations others must complete, creating a 

new kind of overhead that adds to previous, and a 

new issue in operation counting to overcome these 

issues, it would be easier to measure execution time, 

instead of operation counts in real life codes. 

Furthermore, the physical differences in 

performance of different accelerators include 

additional challenges when estimating the 

performance originating from individual processing 

unit and memory speed. Those could be partially 

addressed by expressing the Tparallel,rw(n) as a 

function of those variables, by expressing 

performance per normalised processing unit speed: 

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛) =
𝑇𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
∙
𝐶𝐿𝐾𝑏𝑎𝑠𝑒
𝐶𝐿𝐾

+ 𝑇𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑  

(3) 

On the other hand, the execution time as a 

measurable output, takes into account all overheads, 

without focusing on them individually, as well as the 

hardware constraints that include clock and memory 

speeds, limitations in bandwidth, and all other 

influences that occur, thus making it an indicator that 

is easier to measure. We can in a similar manner 

estimate the execution time that should be expected 

from an ideal parallel machine, based on its number 

of processors: 

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛) =
𝑡𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
 (4) 

Also, in the similar manner we can include 

overhead time to this equation: 

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛) =
𝑡𝑠𝑒𝑟𝑖𝑎𝑙(𝑛)

𝑝
+ 𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (5) 

It is important to note that, the parallel execution 

time expressed in this manner is the time per 

processing unit found in accelerator (parallel CPU or 

GPU), and as such has similar limitations as the 

number of operations from Eq. (3). 

The overhead time, as a difference between real-

world and ideal runs, can be determined by 



5 

 

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors 

comparing the actual measured execution time in real 

world runs to that obtained from Eq. (4), giving us 

the following: 

𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 = 𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛)

− 𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛) 
(6) 

To effectively estimate both the speedup and 

efficiency of parallel execution on parallel CPU and 

GPU we need a solid baseline case that will serve as 

a reference. To this end we will utilize a code 

compiled for a single threaded run with same Jacobi 

algorithm, with all compiler optimizations applied. 

This will give us an insight into an actual execution 

time which we will denote as tserial,CPU(n) in analysis. 

From this t(n) we will determine tparallel,CPU(n) and 

tparallel,GPU(n) using the Eq. (4). The number of 

processing units/threads p for CPU and GPU used in 

simulations is 8 and 2304, respectively. 

The speedup of the parallel algorithm, both 

theoretical and real-world, can be determined by 

comparing it to its serial counterpart, per Eqs. (7) and 

(8): 

𝑆(𝑝) =
𝑡𝑠𝑒𝑟𝑖𝑎𝑙,𝑏(𝑛)

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛)
 (7) 

𝑆𝑟𝑤(𝑝) =
𝑡𝑠𝑒𝑟𝑖𝑎𝑙,𝑏(𝑛)

𝑡𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙,𝑟𝑤(𝑛)
 (8) 

Expressing the speedup over the available 

number of processing units provides us with an 

insight into the efficiency of parallelization, Eqs. (9) 

and (10), where values E ≈ 1 indicate highly efficient 

parallelization, while the values of E ≪ 1 indicate 

significant slowdowns due to overhead or 

insufficient utilization of individual processing units, 

this is in relation to the findings of Hill and Marty 

[17] who shown that locally inefficient core design 

can be globally efficient at large scale. 

𝐸(𝑝) =
𝑆(𝑝)

𝑝
 (9) 

𝐸𝑟𝑤(𝑝) =
𝑆𝑟𝑤(𝑝)

𝑝
 (10) 

Results for simulations of turbulent flow model 

in 2D channel on parallel CPU and GPU, using 

Jacobi model to solve equations are given in Tables 

(4) and (5). Test cases are named after the accelerator 

used and number of cells in simulation grid for that 

case. All test case times are given for 20 000 

iterations with double precision floating point 

numbers on numerical grids consisting of 8192 (8k), 

23768 (32k), 131072 (131k), 524288 (524k), 

2097152 (2M), and 8388608 (8M) elements. From 

the Table 4 it is noticeable that there is significant 

growth in overhead execution time for the parallel 

CPU execution. The growth in the overhead time 

with the grid size for the GPU is significantly lower, 

but it makes nearly entire difference between real-

world and ideal parallel execution. 

From these results, we notice that expected 

parallel execution times, using above Eqs. are 

significantly lower than the real-world performance. 

This is something that can’t be avoided, but can be 

reduced by proper hardware selection and different 

solver choices depending on the scale of the problem. 

Table 4. Simulation times and overhead times 

CASE tserial,b tparallel tparallel,rw toverhead 

Eq.  (4)  (6) 

CPU8k 25.8 3.22 11.41 8.19 

CPU32k 152.4 19.05 57.37 38.32 

CPU131k 722.5 90.32 301.45 211.13 

CPU524k 5860.5 732.56 4197.20 3464.63 

CPU2M 25327.4 3165.93 23675.66 20509.73 

CPU8M 120473.7 15059.21 82879.52 67820.31 

GPU8k 25.8 0.011 92.50 92.49 

GPU32k 152.4 0.066 125.73 125.66 

GPU131k 722.5 0.313 158.14 157.82 

GPU524k 5860.5 2.544 413.59 411.05 

GPU2M 25327.4 10.993 1410.14 1399.15 

GPU8M 120473.7 52.289 5366.13 5313.84 

 
Following the results from the Table 4 speedup 

and computational efficiency of each test case is 

calculated. Results provided in Table 5 indicate that 

at larger grid sizes GPU can provide significant 

speedup in real-world conditions, providing real 

world benefits to the user. However, efficiency of the 

parallelisation from the same table indicates a very 

high overhead on GPU. 

Table 5. Speedup and per core efficiency 

CASE S(p) Srw(p) E(p) Erw(p) 

Eq. (7) (8) (9) (10) 

CPU8k 8 2.26 1 0.28 

CPU32k “ 2.66 “ 0.33 

CPU131k “ 2.40 “ 0.30 

CPU524k “ 1.40 “ 0.17 

CPU2M “ 1.07 “ 0.13 

CPU8M “ 1.45 “ 0.18 

GPU8k 2304 0.28 “ 0.000121 

GPU32k “ 1.21 “ 0.000526 

GPU131k “ 4.57 “ 0.001983 

GPU524k “ 14.17 “ 0.006150 

GPU2M “ 17.96 “ 0.007796 

GPU8M “ 22.45 “ 0,009744 

 

It can be seen that the increase of grid size 

significantly reduces computational capabilities of 

parallel CPU, leading to a lower speedup 

performance over the base case after certain grid 

size, as well as to a drop in per core efficiency at the 

same time. However, on the GPU, the speedup is 

generally increasing with the grid size, and it should 

follow that trend until the physical limitations of the 

hardware are met. At the same time, we can notice 

significant rise in per core efficiency, even though its 

value remains very low, indicating the 

underutilization of computational resources and the 

existence of a significant overhead. 
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4. SUMMARY 

A CFD code with a two-equation turbulence 

model was modified to run on GPU architecture. 

Monophase 2D turbulence flow test case was solved 

on an orthogonal structured grid, while the Jacobi 

solver is used for efficient parallelization. The code 

speedup and computational efficiency were analysed 

over the grid size and compared between parallel and 

serial execution of the code, both on CPU and GPU. 

A significant disparity between results that can 

be expected in theory, and the ones obtained by 

solving the real-world problems that include 

turbulence modelling on parallel machines was 

observable. While the majority of the work executed 

can be readily parallelized, and the number of 

operations can in theory drop to a value close to 106 

(for ideal parallel machine), in reality different kinds 

of overhead become an issue for performance, and as 

such significantly overload accelerators leading to 

slower than expected execution of programs. 

Even though the existing accelerators do suffer 

from issues caused by different overheads, real-

world performance improvements are noticeable, 

and they outperform each other at different problem 

sizes. 

The use of Jacobi solver has potential on both 

current and upcoming GPU and similarly structured 

accelerators/platforms, due to its low number of 

operations, even though it is the slowest to converge 

to a solution, and takes double memory space. An 

alternative to it would be the implementation of red-

black Gauss-Seidel algorithm, using less space, but 

operating only on one half of the problem per 

dimension of array, to avoid recursive dependencies 

that would prevent the parallelization. 

Considering the implementation from the aspect 

of speedup and per core computational efficiency, it 

is noticeable that both parallel CPU and GPU 

outperform single core CPU by a significant amount. 

However, the speedup factor for parallel CPU slowly 

drops as the problem size increases. On the other 

hand, the speedup factor of GPU grows with the 

problem size at larger scales, and should keep 

growing until it meets hardware limitations. 

Efficiency-wise this parallel CPU shown highest 

value in cases CPU32k and CPU131k with a value 

over 0.30. Above those cases efficiency slowly 

drops. On the other hand, GPU efficiency per core is 

very low, in range of 10-3, but it constantly grows, 

and we must keep in mind that these computational 

nodes (CPU and GPU cores) use significantly 

different amounts of power. 

An average CPU core consumption is around 5-

15W, or even high as 20-30W per core depending on 

its purpose and generation, while the GPU cores stay 

around 10-30mW power per core, leading to values 

for our devices that would fit range of 80-120W for 

CPU (total power 140W) and 45-70W for GPU for 

all CUDA cores (total power 160W). From this a 

power consumption per run in case CPU524k would 

be around 0.163 kWh, and similar case GPU524k 

will be in the range of 0.018 kWh on a GPU based 

accelerator. 

The real-world performance of GPU depends on 

its characteristics. While the available number of 

computational cores is significant factor, major 

problems and performance losses come from the 

architecture of Streaming Multiprocessors and 

different Compute Capability versions, with 

significant differences in ability to manage memory, 

schedule tasks, locally store data, or utilize some 

other special functions. Even though improper 

coding for targeted family of GPUs leads to 

performance penalties, noticeable issues come from 

the outside parameters – PCIe lane size, causing the 

very slow data movements between CPU and GPU. 

As said, current CPU-GPU architecture is very 

limited considering the data movements between 

CPU and GPU, creating inevitable overhead delays. 

These problems should be overcome as the new 

architectures and improvements to the existing ones 

are introduced, as well as their availability and 

affordability grows on the market. Some of 

promising current/future platforms/architectures for 

development of highly parallel CFD applications 

such as NVIDIA’s Grace Hopper and Grace 

Blackwell, or the recently announced AMD CPUs 

with NPU Ryzen AI Max+ 395 should reach wider 

market in the following years. OpenACC expansion 

to those accelerators should follow, providing 

smooth and practical transition of existing codes to 

these new platforms with higher memory bandwidth, 

capacity and raw computational power. 
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