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ABSTRACT
In DEM-CFD descriptions of granular assem-

blies, the thermochemical state of the interstitial
gas is commonly assumed to vary on length scales
that are comparable to the supplied spatial resolu-
tion. Since chemical reactions, gas-particle mass and
heat exchanges and mixing limitations may, however,
cause the gas composition to vary on much smal-
ler scales, we present an amendment of the DEM-
CFD formulation that is, conceptually, based on the
likelihood for a particular gas composition to occur
inside a CFD cell. Focussing on a single variable-
size control volume at constant pressure, this prob-
abilistic formulation leads to the notion of a partially
stirred reactor (PaSR) that interacts with an assembly
of DEM particles. The biomass particles we con-
sider here feature a spherical porous structure and
are enclosed by passive boundary layers that control
the transfer of mass and heat towards the surround-
ing PaSR-atmosphere. For a fixed particle size, the
species mass and gas-solid enthalpy balances repres-
enting intra-particle conversion and transport are dis-
cretised along the radial coordinate with a standard
finite volume approach. The combined DEM-PaSR
model can be solved using a statistical approach and,
upon incorporation of solid and gas phase reaction
mechanisms, provides a test bed for gauging the in-
fluence of small-scale thermochemical heterogeneity
on the efficacy of the pyrolysis process.

Keywords: Biomass pyrolysis, Discrete element
method, Partially stirred reactor, PDF method

ABBREVIATIONS
CFD Computational fluid dynamics
DEM Discrete element method
PaSR Partially stirred reactor
PDF Probability density function
SDE Stochastic differential equation

1. INTRODUCTION

In the unresolved DEM-CFD approach for mod-
elling of reactive granular assemblies, the flow field
and the composition of the interstitial gas are de-
scribed on length scales that exceed the particles’
sizes. This is achieved with the aid of a spatial
filtering operation that eliminates small-scale struc-
tures from the flow and composition fields, while
referring the presence of particles and gas-particle
boundaries to a void fraction and a surface density,
respectively. Here, every spatial location is associ-
ated with a mean flow and a mean composition that
are defined as weighted averages of the interstitial
fields over the filter volume centred at the location.
In the present article, our objective is to amend the
unresolved DEM-CFD formulation by a description
of small-scale variability in the gas phase compos-
ition as caused by intricate flow structures, thin re-
action fronts, particle heating or mass transfer. The
incorporation of small-scale compositional hetero-
geneity not only permits a closed-form treatment of
gas phase chemical reactions, but also provides a
pathway for including gas-particle mass and heat ex-
changes with a closure assumption that is less strin-
gent than present hypotheses.

The gas phase composition is commonly ex-
pressed in terms of reactive scalars that uniquely
define the gas’ thermochemical state at low Mach
numbers. Drawing on probabilistic methods that ori-
ginated in the field of turbulent reacting flows [1,
2, 3], the values of the reactive scalars at any loc-
ation inside the filter volume are conceived of as
random variables and associated with a PDF [4].
Starting from the scalars’ balance laws on the inter-
particle void space and incorporating gas-particle
mass and heat exchanges, we obtain an evolution
equation for the one-point, one-time joint scalar PDF
in which the effects of gas phase chemistry are nat-
urally closed. Since spatial transport involves both
two-point statistics and scalar-velocity correlations
which cannot be evaluated based on the joint scalar
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PDF, the transport terms in the PDF equation require
phenomenological closure. For example, species dif-
fusion and heat conduction promote a homogenisa-
tion on the smallest scales that is covered by a micro-
mixing model. Additionally, small-scale advection
causes reorganisations of the scalars’ spatial distri-
butions and is, in the presence of turbulence, often
likened to large-scale diffusion. Finally, the incor-
poration of particles is rendered difficult by the pres-
ence of scalar-geometry correlations as well as the
distinction between the scalars’ distributions along
the particle surfaces and their volume distribution.
However, if the fluid elements are, at least concep-
tually, separated from the particle surface by a res-
istive boundary layer that controls the gas-particle
mass and heat transfer, then it may be admissible to
approximate the surface distributions in terms of the
volume-related joint scalar PDF, a simplification we
adopt here.

In the case of large-scale homogeneity, the PDF
formulation reduces to the law of a PaSR [5]. This is
a model flow system that may be viewed as a con-
stant pressure, variable-volume vessel whose con-
tained fluid elements differ in terms of their ther-
mochemical composition. Physically, the compos-
itional heterogeneity is driven by gas phase chem-
istry, inflow and outflow, while diffusion-induced mi-
cromixing acts in a converse way. In our case, the
gas inside the PaSR additionally interacts with an as-
sembly of spherical porous biomass particles through
mass and heat transfer rates that are obtained from a
passive boundary layer model. The chemical decom-
position of the particles’ solid skeleton is thermally
activated and entails mass effluxes that yield pyro-
lysis gas and condensed phase oil as main products.
The intra-particle transport and conversion are gov-
erned by balance laws for the species masses and the
combined gas-solid enthalpy. The latter is evaluated
based on the assumption that there is no temperature
slip between the solid matrix and the intra-particle
gas at any radial position. Upon spatial discretisa-
tion, the intra-particle balance laws turn into DEM
equations that can be integrated in time alongside the
PaSR equation.

Albeit idealised, the combined DEM-PaSR
formulation we present constitutes a powerful
computer-based tool for analysing the influence that
the commonly disregarded small-scale variability of
the gas composition has on the pyrolysis process.
This, in turn, is a first step towards enriching the
unresolved DEM-CFD approach by a description of
small-scale variability and accommodating gas phase
chemistry without intervening assumptions. As ref-
erence, Table 1 lists the modelling assumptions and
simplifications we introduce in the following on part
of the gas phase, the compositional heterogeneity and
a single biomass particle.

The present article is organised as follows: After
recalling the notion of a spatial filter, the clos-
ure challenges associated with small-scale intersti-

tial transport, chemical reactions and gas-particle in-
teractions are indicated and a transport equation for
the joint scalar PDF is formulated (Section 2). This
equation is coupled to the governing DEM equations
through joint scalar statistics that represent the di-
versity of far-field compositions experienced by the
DEM particles. Following a reduction to the PaSR
(Section 3), we present a single particle model for
biomass alongside the rates at which mass and en-
thalpy are emitted through a passive boundary layer
(Section 4). The relevant numerical solution methods
are briefly outlined (Section 5), before we conclude
with a summary and an outlook (Section 6).

2. MODELLING FRAMEWORK
A granular assembly is a packed or slowly mov-

ing bed of centimetre-sized particles (Figure 1). In
pyrolysis reactors, the bed is subjected to a high-
temperature treatment by directing a hot inert gas
through the bed’s void space Ωg(t). The interstitial
gas behaves as a multicomponent ideal gas and is
described in terms of the velocity ug(x, t), the pres-
sure pg(x, t) and the reactive scalars Φ = (Yg, hg)
that encompass the species mass fractions Yg(x, t) =
(Yg,k(x, t))k∈G and the gas enthalpy hg(x, t). The la-
bel set G that appears here contains the molecu-
lar formulas of all gas phase species. If the Mach
number is small, then the thermodynamic pressure
P is distinct from the mechanical pressure pg(x, t)
and remains uniform across the flow domain. Con-
sequently, the reactive scalars uniquely define the
thermal state of the gas and both the gas temperature
T and the gas density ρg may be computed in terms
of Φ at (x, t) [6],

hg =
∑
k∈G

Yg,khk(T ), (1)

ρg =
PWg

RT
. (2)

Here, hk denotes the specific enthalpy of species k ∈
G and R represents the universal gas constant. The
gas’ mean molecular weight Wg, moreover, is related
to the species’ molecular weights Wk according to
Wg = 1/

∑
k∈G(Yk/Wk).

On the void space Ωg(t), the flow field (ug, pg)
is governed by the variable-density Navier-Stokes
equations [7, Chapter 1]. In the case of equal diffus-
ivities D(Φ) and a Lewis number of unity (Le = 1),
the reactive scalars Φk, moreover, obey the transport
equations [7, Chapter 1]

∂ρgΦk

∂t
+∇x ·

(
ρgugΦk

)
= ∇x ·

(
ρgD∇xΦk

)
+ρgω̇k (3)

with k ∈ G′ = G ∪ {hg}. For k ∈ G, ω̇k(Φ) repres-
ents the rate (in [kgk/(kg(g) s)]) at which gas phase
chemical reactions cause a species to form or van-
ish. The gas enthalpy, by contrast, is a conserved
scalar and its associated source term ω̇hg vanishes.
Based on a Schmidt number Sc of 0.7, the com-
mon diffusivity D(Φ) in Eq. (3) is evaluated in terms
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Table 1. Summary of the modelling assumptions we introduce in Sections 2 to 4. The properties of the gas
phase listed in the first column also apply to the gas in the pore space and the boundary layer of a particle.

Gas phase PDF formulation Particle model

• Ideal gas law (Eq. (2)) • IEM model • Spherical symmetry
• Equal diffusivities • f ρp = f ρ • Constant particle volume

(Sc = 0.7) • Large-scale homogeneity • No internal gas-solid temperature slip
• Le = 1 (PaSR) • Isolated and quasi-steady boundary layers with
• Low Mach number conductivities based on surface/far-field scalars

• No gas phase chemistry

Ωp(t)

Ωg(t)

(ug, pg,Φ)(x, t)Xp(t)

Figure 1. Illustration of a two-dimensional cut
through a packed bed of spherical particles.

of the viscosity µg(Φ) [8, Chapter 2] according to
D(Φ) = µg(Φ)/(ρg(Φ)Sc) [9].

In order to reduce the spatial resolution require-
ments on the interstitial fields, Anderson and Jackson
[10] introduced a spatial filtering operation based on
a non-negative kernel g(r) with r ≥ 0. In particular,
the spatially filtered counterpart ⟨Q(ug,Φ)⟩(x, t) of
an observable Q(ug(x, t),Φ(x, t)) on Ωg(t) is defined
as
εg(x, t)⟨Q(ug,Φ)⟩(x, t)
=

∫
Ωg(t)

g(∥x − y∥)Q(ug(y, t),Φ(y, t)) dy,
(4)

where εg(x, t) denotes the void fraction. Within the
scope of the unresolved DEM-CFD approach, the
characteristic length scale associated with the filter
kernel g is chosen much larger than the particles’
sizes. Since the advective terms in the filtered con-
tinuity equation are naturally closed if the filtered ve-
locity is amended by density-weighting, we further
define the density-weighted average

⟨Q(ug,Φ)⟩ρ =
⟨ρg(Φ)Q(ug,Φ)⟩
⟨ρg(Φ)⟩ . (5)

In a similar way as in Eqs. (4) and (5), the spatial av-
erage {·}p along the surface ∂Ωp(t) of particle p [11,
Chapter 8] and its density-weighted counterpart {·}ρp
are introduced. Here, the role of εg is taken on by the
particle surface density ξp = {1}p. In the following,

we additionally employ the variable Xp(t) to indicate
the degrees of freedom that define the current state of
particle p.

By applying the filtering operation ⟨·⟩ to Eq. (3),
substituting the definitions of the density-weighted
volume and surface averages and incorporating the
mass and enthalpy fluxes ρg(Φ)ṡk(Φ,Xp) across the
particle boundaries, we obtain [3, 12]

∂εg⟨ρg⟩⟨Φk⟩ρ
∂t

+ ∇x ·
(
εg⟨ρg⟩⟨ugΦk⟩ρ

)
= ∇x ·

(
εg⟨ρg⟩⟨D∇xΦk⟩ρ

)
+ εg⟨ρg⟩⟨ω̇k⟩ρ

+
∑

p

ξp{ρg}p {ṡk}ρp .
(6)

Apart from the accumulation term on the left hand
side of Eq. (6), all transport, reaction and gas-particle
transfer processes remain unclosed in terms of ⟨ug⟩ρ
and ⟨Φ⟩ρ. In particular, the spatial advection and
diffusion terms involve ug-Φ-correlations and spa-
tial gradients, respectively, whereas the rates ω̇ and
ṡ(·,Xp) are, generally, nonlinear in Φ and the gas-
particle fluxes involve surface instead of volume av-
erages. Indeed, the filtered fields ⟨ug⟩ρ and ⟨Φ⟩ρ do
not include any information on the small-scale inter-
dependency of ug and Φ or on their spatial distribu-
tions inside the filter’s support. For the gas phase
chemistry, a common closure hypothesis is the as-
sumption of small-scale homogeneity that permits an
evaluation of the filtered reaction rates in terms of the
filtered composition, ⟨ω̇(Φ)⟩ρ = ω̇(⟨Φ⟩ρ) [13]. In the
context of unresolved DEM-CFD formulations for
reactive granular assemblies, however, this assump-
tion is not met if interstitial reaction fronts develop,
mixing limitations persist or heterogeneities in the
particles’ mass or heat releases occur.

In order to augment the physical description of
the interstitial gas by information on the values that
the reactive scalars attain throughout the volume of
a filter centred at x, we adopt a technique that has
originally been developed in the context of turbu-
lent reacting flows [3, 4]. Here, the density-weighted
PDF f ρ(ϕ, x, t) = ⟨δ(ϕ −Φ)⟩ρ(x, t) is considered as a
large-scale descriptor of the gas phase composition
in place of the filtered scalars ⟨Φ⟩ρ(x, t). The ar-
gument ϕ of f ρ(ϕ, x, t) is referred to as the sample
space variable and ranges over all possible composi-
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tion vectors. In the absence of density-weighting, the
probability f (ϕ, x, t) dϕ with

f (ϕ, x, t) =
⟨ρg(Φ)⟩(x, t) f ρ(ϕ, x, t)

ρg(ϕ)
(7)

may be interpreted as the fraction of fluid elements
near x that possess a composition Φ in [ϕ,ϕ + dϕ).
By taking the time derivative of εg⟨ρg⟩⟨δ(ϕ−Φ)⟩ρ and
substituting Eq. (3) alongside the mass balance equa-
tion and the flux boundary conditions at the particle
surfaces, the following evolution equation for f ρ is
obtained,

∂εg⟨ρg⟩ f ρ
∂t

+ ∇x ·
(
εg⟨ρg⟩ f ρ

〈
ug +

∇x(ρgD)
ρg

∣∣∣∣∣∣ϕ
〉

+
∑

p

ξp{ρg}p f ρp D(ϕ) {n|ϕ}p
)

= ∇x ·
[
D(ϕ)∇x

(
εg⟨ρg⟩ f ρ

)]
− ∇ϕ ·

(
εg⟨ρg⟩ f ρω̇(ϕ)

)
+M f ρ +

∑
p

Sp f ρp ,

(8)

where n(x, t) denotes the unit normal vector on the
surface of a particle and the particle-specific operator
Sp is given by

Sp f ρp = ξp{ρg}p f ρp
∑
k∈G

ṡk(ϕ,Xp)

− ∇ϕ ·
ξp{ρg}p f ρp

ṡ(ϕ,Xp) − ϕ
∑
k∈G

ṡk(ϕ,Xp)


 .

(9)

In Eq. (8), the influence of gas phase chemistry on the
temporal evolution of f ρ is naturally closed, while
the contributions by the particles involve the un-
known density-weighted surface PDFs f ρp (ϕ, x, t) =
{δ(ϕ − Φ)}ρp(x, t). Because the gas is separated from
the particle surface by a boundary layer (Section 4)
and since insights into the relation of f ρp and f ρ

are yet absent, we adopt the simplifying closure hy-
pothesis that the PDF f ρ associated with the filter
volume about x is representative also of the scal-
ars’ distribution f ρp along the surface of particle p,
f ρp = f ρ. The operator M in Eq. (8) represents mi-
cromixing and reads

M f ρ = −εg⟨ρg⟩
∑

k,l∈G′

∂2

∂ϕl∂ϕk

(
D(ϕ)

× f ρ ⟨∇xΦl · ∇xΦk |ϕ⟩
)
.

(10)

Like the large-scale advection term on the left hand
side of Eq. (8), this term involves conditional expect-
ations and, hence, remains unclosed in terms of f ρ.
Since f ρ does not include any information on the spa-
tial arrangement of the fluid elements throughout the
filter volume or on their velocities, neither filtered
gradients nor n-Φ- or ug-Φ-correlations can be eval-
uated based on f ρ. On the positive side, f ρ permits
the direct evaluation of filtered Φ-dependent func-

tions. For example, the filtered reaction rates are ob-
tained as

⟨ω̇⟩ = ⟨ρg⟩
∫
ω̇

ρg
f ρ dϕ. (11)

In order to close the micromixing contributionM f ρ

in terms of f ρ, we employ the IEM (Interaction by
Exchange with the Mean) model [5, 9]. This model
is based on the idea that f ρ relaxes towards the per-
fectly mixed state δ(ϕ − ⟨Φ⟩ρ) over the time scale
τmix,

M f ρ =
εg⟨ρg⟩
τmix

∇ϕ ·
[(
ϕ − ⟨Φ⟩ρ

)
f ρ

]
. (12)

Despite its shortcomings, the IEM model has the
merit of conceptual and formal simplicity; it may be
admissible if our objective is to assess in a qualit-
ative, indicative way how small-scale heterogeneity
affects process-level predictables.

Within the scope of DEM models of granular as-
semblies, temporal changes in the degrees of free-
dom Xp(t) of particle p are brought about by intra-
particle conversion as well as momentum, heat and
mass exchanges between the particle, the interstitial
gas and the neighbouring particles. Excluding dir-
ect particle-particle interactions, the evolution laws
of the DEM degrees of freedom can often be cast into
a system of differential algebraic equations,

M(Xp(t))
dXp(t)

dt
=

〈
ḣ(⟨ug⟩|p,Φ(t),Xp(t))

〉
(13)

for p = 1, 2, . . . . Here, M(Xp(t)) is a mass
matrix that may be singular, ⟨ug⟩|p represents the
filtered gas velocity experienced by particle p and
ḣ(⟨ug⟩|p,Φ(t),Xp(t)) encompasses the rates associ-
ated with intra-particle processes and gas-particle in-
teractions.

In summary, the combined DEM-PDF frame-
work is based on Eq. (13) as well as modelled forms
of Eq. (8) and the filtered gas phase momentum equa-
tion. Note that the filtered continuity equation fol-
lows as a consequence of Eq. (8) and that the filtered
gas density ⟨ρg⟩ may be obtained from f ρ by substi-
tuting unity for ω̇ in Eq. (11) [3],

⟨ρg⟩ =
〈

1
ρg

〉−1

ρ

=

(∫
f ρ

ρg
dϕ

)−1

. (14)

In order to circumvent the closure challenge asso-
ciated with large-scale advection while maintaining
a detailed description of small-scale compositional
heterogeneity, the DEM-PDF approach is simplified
to the case of large-scale homogeneity. This reduc-
tion gives rise to the concept of a PaSR that ex-
changes mass and heat with a granular assembly.

3. REDUCTION TO THE PARTIALLY
STIRRED REACTOR

The PaSR is a simplified flow model in which
the physical descriptors of the reactive gas are as-
sumed to be uniform across the reactor domain (Fig-
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Φ(t)

f(
φ
,t

)

φ

Gas compositionΦ(t)

Intra-particle reaction and transport

Pressure P

Ṡ

Ṙ

Boundary layer model

Y ∞
g,k

h 0
g

h∞
g

Y 0
g,k

Particle p

Figure 2. Schematic illustration of a constant pressure PaSR containing an assembly of spherical biomass
particles (white disks) with modelled boundary layers (dashed circles). The grey patches indicate individual
fluid elements whose thermochemical statesΦ(t) are distributed according to f (·, t) = ⟨ρg(Φ)⟩(t) f ρ(·, t)/ρg(·).
Note that, in slight departure from the graphical depiction, the fluid elements’ individual extents are van-
ishingly small and that every fluid element inside the PaSR yields a far-field composition Φ(t) = (Y∞g , h∞g )
with which a DEM particle interacts.

ure 2). If the thermodynamic pressure P remains
constant, then the volume of the reactor changes
commensurate with the temporal changes in the
mean gas density ⟨ρg⟩. The distinguishing feature
of the PaSR is that the thermochemical composi-
tion Φ(t) of the gas inside the reactor is a vector-
valued random variable with associated PDF f (·, t) =
⟨ρg(Φ)⟩(t) f ρ(·, t)/ρg(·). If we interpret Φ(t) as the
composition of a single fluid element chosen uni-
formly randomly from within the reactor, then the
PDF f (·, t) quantifies the compositional variability
among the fluid elements. In Figure 2, the fluid ele-
ments are depicted as white-bordered squares and the
shadings reflect the compositions they carry. While
fluid elements are infinitely small, the finite extent
of the squares is merely an aid to the graphical il-
lustration. In particular, we emphasise that the white
border lines do not correspond to a grid.

From Eqs. (8) and (12), the evolution law gov-
erning f ρ is obtained by integrating over the reactor
domain Ω(t) and substituting the filtered mass bal-
ance [5],

∂ f ρ

∂t
+

f ρ − f ρin
τres

= f ρ
∑

p

ξp

εg

∑
k∈G

(
ṡk(ϕ,Xp) − ⟨ṡk(Φ,Xp)⟩ρ

)
− ∇ϕ ·

{
f ρ

[
ω̇(ϕ) − 1

τmix

(
ϕ − ⟨Φ⟩ρ

)
+

∑
p

ξp

εg

(
ṡ(ϕ,Xp) − ϕ

∑
l∈G

ṡl(ϕ,Xp)
)]}

.

(15)

Here, τres represents the mean residence time of the
fluid elements inside the reactor and f ρin is the joint
scalar PDF associated with the gas flowing into the
PaSR. In view of our closure assumption f ρp = f ρ, the
density-weighted surface mean {ṡk(Φ,Xp)}ρp associ-
ated with particle p has been approximated in terms
of ⟨ṡk(Φ,Xp)⟩ρ in Eq. (15).

Although we turn to a specific particle model in
the following, the DEM-PaSR formulation is not re-
stricted to this model (or, indeed, the process of bio-
mass pyrolysis). Formally, the main conditions on
the single particle model and the enveloping bound-
ary layer are that the particle’s degrees of freedom Xp
obey Eq. (13) and that rate expressions for the mass
and enthalpy fluxes ρg(Φ)ṡk(Φ,Xp), k ∈ G′, crossing
into the bulk gas are available.

4. MODEL FOR THE CONVERSION OF
A BIOMASS PARTICLE

Considering a spherically symmetrical particle,
we present a spatially one-dimensional model for the
decomposition of biomass that captures both internal
heat and mass transfer limitations and the transfer
resistance imparted by the boundary layer surround-
ing the particle. While temperature inhomogeneities
in thermally thick biomass particles have been ac-
counted for in past DEM formulations [14, 15, 16],
mass transport limitations associated with the gas
flow through the particle’s pore space or the gas-
particle boundary layer have not yet been included
to our awareness [17].

Since biomass particles naturally exhibit a com-
plicated porous structure [18], we consider a single

5
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particle with radius R as the union of a solid mat-
rix with porosity ψ(r, t), r ∈ [0,R], and a pore
space gas. As the particle’s pyrolysis commences,
the intra-particle solid matrix decomposes into solid
and gaseous products [19]. The solid products are
thought to remain attached to the matrix, while the
gas products are released to the immediate pore space
and migrate through the pore structure towards the
ambient gas. Because of the short intra-particle gas
retention times [20], gas phase chemical reactions in-
side the pore space are omitted. The chemical com-
position of the solid phase is described in terms of
the mass fractions Ys(r, t) = (Ys,i(r, t))i∈S of the solid
species whose labels i are aggregated into the set S.
Owing to pyrolysis reactions, the mass density of the
solid species i ∈ S changes in time according to

∂ρsYs,i

∂t
= Ṙi, (16)

where ρs is the constant mass density of the solid
matrix and Ṙi(Ys,T ) (in [kgi/(s m3(s))]) is the net
mass production rate of solid species i due to pyro-
lysis. Since we assume the combined gas-solid
volume of the particle to remain unchanged during
its conversion, the porosity ψ changes only as a con-
sequence of the production or consumption of the
solid species’ masses,

∂ψ

∂t
= − (1 − ψ)

ρs

∑
i∈S

Ṙi. (17)

Similar to the gas in the inter-particle void space
of a particle assembly, the chemical make-up of the
gas inside the particle’s pore space is determined
by the species mass fractions Yg(r, t). Denoting by
Ṡ k(Ys,T ) (in [kgk/(s m3(s))]) the rate at which spe-
cies k ∈ G is released during the solid matrix’s de-
composition, the species-specific mass balance reads
in spherical coordinates

∂ρgψYg,k

∂t
+

1
r2

∂

∂r

(
r2ρgψugYg,k

)
=

1
r2

∂

∂r

(
r2ρgψD

∂Yg,k

∂r

)
+ (1 − ψ)Ṡ k,

(18)

where ug(r, t) represents the radial gas velocity. Upon
summation over all species k ∈ G, Eq. (18) yields the
local mass balance
∂ρgψ

∂t
+

1
r2

∂

∂r

(
r2ρgψug

)
= (1 − ψ)

∑
k∈G

Ṡ k. (19)

At every radial location, the solid matrix and the
gas inside the particle’s pore space are assumed to be
thermally equilibrated. Consequently, the joint gas-
solid enthalpy balance is given by [21]

∂ρh
∂t
+

1
r2

∂

∂r

r2ρgψug

∑
k∈G

Yg,khk


=

1
r2

∂

∂r

r2ρgψD
∑
k∈G

∂Yg,k

∂r
hk + r2λ

∂T
∂r

 .
(20)

This balance law is formulated in terms of the total
specific enthalpy h(r, t) (in [J/kg]) associated with
both phases. With reference to the local volume-
averaged particle density ρ = ρgψ + ρs(1 − ψ), h is
defined according to

ρh = ρgψ
∑
k∈G

Yg,khk(T )

+ ρs(1 − ψ)
∑
i∈S

Ys,ihi(T ).
(21)

If the intra-particle gas and solid phases conduct heat
radially in a parallel fashion, then the thermal con-
ductivity λ in Eq. (20) coincides with the volume
average of the conductivities λg and λs of the two
phases,

λ = ψλg + (1 − ψ)λs. (22)

In view of the ideal behaviour of the pyrolysis gas
and the low Mach number of the intra-particle flow,
the gas density ρg is linked to the species mass frac-
tions Yg and the temperature T by Eq. (2).

Since the flow around the biomass particle is not
spatially resolved, we employ a boundary layer treat-
ment to evaluate the rates at which mass and enthalpy
are emitted from the particle surface towards the far-
field gas. As in the particle’s interior, gas phase
chemical reactions are neglected. Following the for-
mulation of Spalding [22], the mass and thermal
boundary layers coincide (Le = 1) and behave in
a quasi-steady way [23, Chapters 3 and 10]. For a
given boundary layer conductivity ρgD = µg/Sc, the
conservation laws for the species masses (k ∈ G)
and the gas enthalpy may be integrated analytically
across the boundary layer [24, p. 56] to yield the flow
rates

ṁg,k = 2πRρgDSh
(
Y0

g,k − Y∞g,k
)
, (23)

ḣg = 2πRρgDNu
(
h0

g − h∞g
)

(24)

in the case ṁg = 0 and

ṁg,k = ṁg

Y0
g,k − Y∞g,k exp

(
− ṁg

2πRρgDSh

)
1 − exp

(
− ṁg

2πRρgDSh

) , (25)

ḣg = ṁg

h0
g − h∞g exp

(
− ṁg

2πRρgDNu

)
1 − exp

(
− ṁg

2πRρgDNu

) (26)

otherwise. The flow rate ṁg of the gas emanating
from the biomass particle, moreover, is computed
from

ṁg = 4πR2
(
ρgψug

)∣∣∣∣
r=R

. (27)

The surface velocity ug(R, t) that appears here is, in
turn, obtained from Eq. (19) and the boundary condi-
tion ug(0, t) = 0. In Eqs. (23) to (26), the superscripts
0 and∞ indicate values at the particle surface and in
the far-field, respectively. Note that, for a particle
contained in a PaSR with volume V(t) = volΩ(t),
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the far-field scalars (Y∞g , h∞g ) = Φ(t) are random
variables that are distributed according to the PDF
f (·, t) (Section 3), while ṁg,k/V(t) and ḣg/V(t) yield
the sources ξp(t)ρg(Φ(t))ṡk(Φ(t),Xp(t)) in Eq. (15).
Since the Lewis number is unity, the Nußelt and
Sherwood numbers Nu and Sh in Eqs. (23) to (26)
are equal; they may be evaluated using the Ranz-
Marshall correlation [25] which has been calibrated
for a particle Reynolds number Rep in the range
0 ≤ Rep ≤ 200. Following Abramzon and Sirig-
nano [26], the viscosity µg across the boundary layer
is computed from the surface mass fractions and tem-
perature as well as their far-field counterparts using
the 1/3-rule. Because there is no efflux of solid phase
enthalpy from the particle, Eqs. (23) through (27)
jointly provide the boundary conditions at r = R of
Eqs. (18) and (20). At the particle centre, by contrast,
symmetry boundary conditions apply.

In order to convert the balance laws in Eqs. (16)
to (20) into the form of Eq. (13), we apply a ra-
dial finite volume discretisation with staggered vari-
able arrangement. In particular, the degrees of free-
dom associated with the distributed solid masses
ρsYs,i(1 − ψ)4πr2, i ∈ S, the gas’ mass fractions
Yg,k, k ∈ G, and the temperature T are stored at the
cell centres, while the degrees of freedom paramet-
erising the radial intra-particle gas velocity ug live at
the cell faces. Since the radial profile of ug responds
on an instantaneous basis to gas release and tem-
poral changes in the gas density and particle porosity,
the semi-discrete counterpart of the mass balance in
Eq. (19) yields an algebraic relation that renders the
mass matrix M in Eq. (13) singular.

5. NUMERICAL SOLUTION METHODS
The evolution equation governing f ρ(ϕ, t)

(Eq. (15)) corresponds to a differential Chapman-
Kolmogorov equation with vanishing diffusion
matrix and may, therefore, be associated with a
stochastic jump-drift process [27, Chapter 3]. Within
the scope of a Monte Carlo solver, different realisa-
tions of this process are computed by solving the
corresponding SDE for independent random drivers.
Since the SDE is kinetically linked to the particles’
degrees of freedom Xp(t) with p = 1, 2, . . . , the de-
terministic DEM equations (Eq. (13)) are integrated
concurrently. Over the course of a time step, the
SDE is decomposed into fractional steps using a first
order scheme [2, Section 6]. Consequently, physical
and chemical effects that occur simultaneously can
be treated in a sequential way, thus permitting the
application of a dedicated time integration scheme
in each fractional step.

6. CONCLUSIONS
In this contribution, we summarised the formal

basis of a combined DEM-PaSR model for the pyro-
lysis of an assembly of spherical biomass particles.
Here, the reactive scalars parameterising the gas’
thermochemical state are conceived of as random

variables whose associated PDF changes in time ow-
ing to mass and heat exchanges with the biomass
particles, gas phase chemical reactions, micromixing
and flow-through. By construction, this statistical de-
scription covers small-scale heterogeneity of the gas
composition and allows for a closed-form treatment
of gas phase chemical reactions. In order to accom-
modate gas-particle mass and heat exchanges, we ar-
gued that the separation of the DEM particles from
the bulk gas by a resistive boundary layer permits the
approximation of the particle surface-specific joint
scalar PDFs in terms of the volume-based PDF that
defines the state of the PaSR. Small-scale diffusion
and heat conduction, moreover, are accounted for
by a micromixing model. The DEM description of
a biomass particle is based on a finite volume dis-
cretisation of the intra-particle balance laws for the
solid species’ masses, the masses of the gaseous spe-
cies, the total gas mass and the combined gas-solid
enthalpy. Additionally, the biomass particle is sur-
rounded by a passive boundary layer that restricts the
transfer of mass and heat towards the composition-
ally heterogeneous gas in the far-field.

By design, the PaSR permits a systematic ana-
lysis of how large-scale predictables, for example,
the pyrolysis duration, the amount of energy con-
sumed and the composition of the pyrolysis gas, are
influenced by small-scale heterogeneity in the gas
composition. In the near future, we plan to apply the
DEM-PaSR model to the pyrolysis of cellulose, the
main constituent of woody biomass, and quantify the
impact of micromixing limitations.
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