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ABSTRACT
Accurate and efficient evaluation of chemical

source terms is essential for high-fidelity simulations
of reactive flows, particularly in large eddy simula-
tion (LES) and direct numerical simulation (DNS).
However, the stiffness and high dimensionality of
detailed chemical kinetics render direct integration
computationally expensive. To address this chal-
lenge, we propose a Mixture of Experts (MoE) neural
network architecture that adaptively partitions the
thermochemical space and models source terms us-
ing specialized subnetworks. These expert subnet-
works are coordinated by a gating network that as-
signs input-dependent weights, allowing the model to
capture complex, nonlinear reaction behavior across
a wide range of conditions without manual zone
definitions.

The MoE model is trained on data generated
by detailed kinetic solvers and optimized using a
mean squared error loss function. Once trained,
it is integrated into our in house open source soft-
ware OpenPhase Acadmic (www.openphase.rub.
de), allowing for fully self-contained combustion
simulations without the need for external libraries
such as CANTERA. Comparative simulations show
that the MoE model reproduces reaction rates and
thermochemical trends with high accuracy, closely
matching the CANTERA reference results. Bey-
ond accuracy, the MoE approach is more conveni-
ent comparing to other recommended methods for
the implementation and is inherently compatible with
GPU-based inference. This enables fast, on-the-
fly thermochemistry evaluation, making the method
highly suitable for large-scale reactive flow simula-
tions.
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NOMENCLATURE
N [−] number of species
n [−] number of expert networks in

the MoE model

Mk [−] any property of species k
ν′ [−] molar stoichiometric coeffi-

cient of reactants
ν′′ [−] molar stoichiometric coeffi-

cient of products
W̄ [kg/mol] mean molecular weight of the

mixture
β j [−] exponential temperature expo-

nent for reaction j
ω̇ [W/m3] heat release rate
ω̇k [mol/m3 · s]net production rate of species

k
X [−] input vector to the neural net-

work
Y [−] predicted output vector from

neural network
ρ [kg/m3] density
σ [−] standard deviation of predic-

tion error
θg [−] trainable parameters of the

gating network
θi [−] trainable parameters of the

i-th expert network
A j [1/s] pre-exponential factor for

reaction j
Ei(X; θi) [−] output of the i-th expert net-

work
E j [J/mol] activation energy for reaction

j
gi(X) [−] pre-activation output of gating

network
Gi(X; θg) [−] gating coefficient for i-th ex-

pert
K f j [1/s] rate constant of the forward

reaction j
Kr j [1/s] rate constant of the reverse

reaction j
p [Pa] thermodynamic pressure
R [J/mol · K] universal gas constant
T [K] temperature
Tw [K] wall temperature
Tinlet [K] inlet temperature
Wk [kg/mol] molecular weight of species k
Yk [−] mass fraction of species k
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L [−] total loss function of the MoE
model

Subscripts and Superscripts
f forward reaction
inlet inlet boundary
j index of reaction
k index of species
r reverse reaction
w wall

1. INTRODUCTION
Accurate and efficient modeling of chemical kin-

etics is essential for high-fidelity simulations of re-
active flows, particularly in large eddy simulation
(LES) and direct numerical simulation (DNS). These
simulations depend on detailed chemical mechan-
isms to resolve flame structures and predict spe-
cies evolution and heat release rates. However, the
strong nonlinearity, stiffness, and high dimensional-
ity of these mechanisms make direct integration of
kinetic source terms prohibitively expensive in com-
plex turbulent configurations. To reduce this cost,
various surrogate modeling strategies have been ex-
plored, including mechanism reduction, manifold-
based tabulation, and pre-trained neural networks [1,
2, 3, 4]. Among these, machine learning–based
methods—particularly deep neural networks—have
gained attention for their ability to approximate com-
plex kinetics while significantly lowering computa-
tional expense.

One of the earliest applications of machine learn-
ing in combustion modeling employed dense feed-
forward neural networks to emulate detailed chem-
ical kinetics. These models are trained on high-
fidelity datasets—typically generated from laminar
flame simulations or precomputed manifolds—to
learn mappings from input features such as species
mass fractions and temperature to outputs like reac-
tion rates or thermochemical source terms. Zhang
et al. [5] demonstrated that deep neural networks
can approximate complex reaction kinetics with high
accuracy when trained on structured datasets and
equipped with robust sampling strategies. Cheng et
al. [4] further showed that such surrogates can be de-
ployed in DNS to accelerate on-the-fly evaluation of
chemical source terms, reducing overall simulation
cost while preserving key flame characteristics. Des-
pite their interpolation capabilities, these black-box
models often lack physical consistency and may lose
accuracy when extrapolating to regions of thermo-
chemical space that are underrepresented in the train-
ing data [2].

To overcome the limitations of purely data-
driven models, recent research has explored embed-
ding physical laws into the training process through
physics-informed neural networks (PINNs). Rather
than relying solely on labeled data, PINNs incor-
porate domain knowledge—such as conservation of
mass, element balance, and Arrhenius kinetics—into

the loss function, enabling the network to satisfy
governing equations during optimization. Zhang
et al. [6] introduced a constrained reaction-kinetics
PINN (CRK-PINN), which embeds both element
conservation and kinetic rate expressions to improve
prediction accuracy in laminar flames. Wu et al. [7]
extended this approach with FlamePINN-1D, which
enables both forward and inverse solutions of 1D re-
acting flow problems while maintaining thermody-
namic consistency and reducing data requirements.
By embedding physical structure into the training
process, PINNs offer improved extrapolation per-
formance and generalizability, particularly in low-
data or multiscale environments.

Moving beyond loss-function constraints, Ji and
Deng [8] introduced the Chemical Reaction Neural
Network (CRNN), a neural architecture explicitly
designed to reflect the structure of chemical kinet-
ics. Rather than imposing physical laws through
the loss function, the CRNN encodes them directly
into the network architecture. Each layer and con-
nection corresponds to a chemical species or reac-
tion pathway, allowing the model to learn both reac-
tion mechanisms and kinetic parameters from time-
series data of species concentrations. This physics-
structured design enforces thermodynamic consist-
ency and mass-action kinetics by construction, while
also enhancing interpretability. However, the fixed
structure of CRNNs may limit their flexibility when
adapting to mechanisms with different topologies or
under varying flow conditions.

While structured and physics-informed networks
have improved the fidelity of combustion surrog-
ates, another effective strategy involves decompos-
ing the domain—spatially or in thermochemical
space—into distinct regimes, each modeled by a
separate neural network. Cheng et al. [4] imple-
mented this by dividing the flame domain into four
zones—burned gas, reaction zone, preheated zone,
and unburned gas—based on local thermochemical
structure. A separate neural network was trained for
each zone, allowing specialization in the dynamics
and scales relevant to each region. This clustering-
based method reduced local approximation error and
improved robustness in DNS. However, its reliance
on manually defined thresholds tied to specific fuels
and flame conditions limits generalization. Cheng et
al. acknowledged this drawback and suggested that
future work could benefit from automated or unsu-
pervised clustering strategies adaptable to different
reaction mechanisms or combustion regimes.

A natural progression of the zone-based cluster-
ing idea is the Mixture of Experts (MoE) framework,
where both the partitioning of thermochemical space
and the specialization of subnetworks are learned
automatically during training. Owoyele et al. [9] ap-
plied this concept to surrogate modeling of combus-
tion manifolds by training multiple expert networks
and a gating function to emulate species mass frac-
tions from precomputed flamelet data. Their method
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eliminated the need for a priori clustering while pre-
serving interpretability through data-driven special-
ization.

Building on this principle, the present work em-
ploys a MoE architecture to directly learn chem-
ical source terms—specifically, reaction rate outputs
from detailed kinetics—based on local thermochem-
ical states. The proposed surrogate is designed for
on-the-fly evaluation within reactive flow solvers,
enabling accurate and efficient replacement of stiff
chemical source term calculations without relying on
predefined zonal boundaries. The primary motiva-
tion for employing a neural network model is to en-
hance the flexibility and portability of the simula-
tion framework. Unlike traditional libraries such as
Cantera, which are not compatible with GPU-based
computation using CUDA, a neural network can be
deployed entirely on the GPU. This eliminates the
need for external software to evaluate thermochem-
ical properties and enables high-performance simu-
lations on GPU-accelerated platforms.

2. MATHEMATICAL MODEL
For a mixture containing N chemical species, the

reactions occur according to [10]:
N∑

k=1

ν′k jMk ⇌
N∑

k=1

ν′′k jMk, (1)

whereMk represents a property of species k involved
in reaction j, and ν′k j and ν′′k j are the molar stoi-
chiometric coefficients of species k on the reactant
and product sides, respectively.

Let Yk, ρ, and ω̇k represent the mass fraction of
species k, the mixture density, and the net production
(or destruction) rate of species k due to chemical re-
actions. The governing equations are given by [10]:

∂Yk

∂t
=
ω̇k

ρ
, (2)

ω̇k = Wk

Nr∑
j=1

νk j

K f j

N∏
k=1

[Xk]ν
′
k j − Kr j

N∏
k=1

[Xk]ν
′′
k j

 ,
(3)

νk j = ν
′′
k j − ν

′
k j, (4)

[Xk] =
ρYk

Wk
, (5)

ρ =
pW̄
RT
, (6)

1
W̄
=

N∑
k=1

Yk

Wk
, (7)

where Wk is the molecular weight of species k, and
[Xk] is its molar concentration. The terms W̄, p, and
T refer to the mean molecular weight, pressure, and
temperature of the gas mixture, respectively. The
universal gas constant is R = 8.314 J/(mol · K).

The reaction rate constants K f j and Kr j for the
forward and reverse directions of reaction j are typ-
ically modeled using the Arrhenius expression [10]:

K j = A jT β j exp
(
−

E j

RT

)
, (8)

where A j, β j, and E j are empirical parameters de-
termined from experimental measurements. All
these constants are evaluated separately for forward
and reverse reaction.

3. DATA GENERATION
In this study, data required for training the

machine learning models were generated through
detailed numerical simulations of premixed meth-
ane/air combustion, using the BFER [11] chemical
kinetics mechanism. This mechanism involves six
species: O2,CH4,H2O,CO,CO2,N2, participating
in two global reaction steps,

CH4 + 1.5 O2 → CO + 2 H2O
CO + 0.5 O2 ↔ CO2

For simplicity, the effect of pressure is neglected and
fixed at 1 atm throughout all simulations.

To ensure comprehensive coverage of the ther-
mochemical composition space encountered during
practical simulations, a wall-flame interaction con-
figuration was chosen as the test case. This config-
uration captures a wide range of flame behaviors and
mixture conditions. The computational domain and
boundary setup are shown in Figure 1. The key con-
trol parameters were the inlet temperature Tinlet, var-
ied between 300 K and 800 K. The upper and the
lower wall are kept at the same temperature, Tw. To
cover a wide temperature range, Tw is varied from
300 K to 1200 K. These boundary conditions pro-
duce a wide variety of reactive flow states. To per-
form these simulations, OpenPhase Academic (www.
openphase.rub.de) was used, which was coupled
with CANTERA to model the thermodynamic prop-
erties and kinetic information. The simulations were
conducted using a hybrid numerical solver that com-
bines the Lattice Boltzmann Method (LBM) with the
Finite Difference Method (FDM). In this approach,
the flow field is resolved using a thermal compress-
ible Lattice Boltzmann model, while the temperat-
ure and species transport equations are solved using
finite difference techniques. The underlying math-
ematical model describes a mixture comprising N
species under low Mach number conditions, as de-
tailed in [12]. From these simulations, the local flow
field—specifically, species mass fractions and tem-
perature—was sampled and recorded as input fea-
tures. As the next step in generating the dataset, for
the sake of higher accuracy, the corresponding output
quantities, namely the net production rates of chem-
ical species, were calculated via CANTERA. These
quantities exhibit complex, nonlinear, and stiff be-
havior, primarily due to their strong temperature de-
pendence following the Arrhenius law. The net pro-
duction rates span several orders of magnitude, re-
flecting the multi-scale nature of chemical kinetics
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and presenting a significant challenge for data-driven
modeling.

Figure 1. Schematic view of the simulation do-
main used to generate training data. The setup
features a premixed methane/air flow interact-
ing with two planar parallel walls at constant
and equal temperature. By varying the inlet
temperature (Tinlet) and wall temperature (Tw), a
wide range of thermochemical states are obtained
within the gas phase, which are used to train the
neural network models. We use the symmetry of
the problem with respect to the middle plane and
show only half of the domain for the fields of tem-
perature (upper half) and the rate of heat release
(lower half).

4. NEURAL NETWORK ARCHITEC-
TURE

Inspired by the approach of Chi et al. [13], who
manually partitioned the reactive flow domain into
sub-regions, we employ a neural network architec-
ture that learns such partitions automatically from
data. Manual domain decomposition often relies
on problem-specific heuristics that may not gener-
alize across different chemical mechanisms. To ad-
dress this, we adopt a Mixture of Experts (MoE)
framework, which enables the network to learn dis-
tinct functional regimes in a data-driven and adaptive
manner.

The MoE model consists of multiple specialized
subnetworks, known as experts, and a separate gat-
ing network that dynamically assigns soft weights to
each expert based on the input. This design enhances
the model’s capacity to represent the complex, non-
linear behavior characteristic of detailed chemical
kinetics.

4.1. Problem Formulation

Let the input vector X ∈ Rd represent the local
thermochemical state, consisting of the mass frac-
tions of N chemical species and the temperature T :

X = [Y1,Y2, . . . ,YN ,T, 1/T ]⊤ . (9)

To better capture Arrhenius-type behavior, the recip-
rocal of temperature (1/T ) is included as an addi-
tional input. The output vector Y ∈ RN contains the
net production rates of the species, as computed by a
detailed chemical kinetics solver.

In the Mixture of Experts framework, the target
function is approximated using K expert networks.
The final output is computed as a weighted sum of
the expert predictions:

Y =
K∑

i=1

Gi(X; θg) · Ei(X; θi), (10)

where Ei(X; θi) is the output of the i-th expert, and
Gi(X; θg) is the corresponding gating weight com-
puted by the gating network. These weights are nor-
malized using a softmax function:

Gi(X) =
exp(gi(X))∑K

j=1 exp(g j(X))
, i = 1, . . . ,K. (11)

Each expert is encouraged to specialize in a particular
thermochemical subdomain (e.g., high vs. low tem-
perature, or fuel-lean vs. fuel-rich regions), while the
gating network learns to interpolate between them
smoothly.

4.2. Loss Function and Training Strategy
The model is trained end-to-end using super-

vised learning. The loss function is defined as the
mean squared error (MSE) between the predicted and
reference production rates:

L(θg, θ1, . . . , θK) =

∥∥∥∥∥∥∥Ytrue −

K∑
i=1

Gi(X)Ei(X)

∥∥∥∥∥∥∥
2

,

(12)

where Ytrue denotes the reference production rates
from detailed kinetics. The model is optimized using
the Adam optimizer. The dataset is split into training,
validation, and test subsets.

4.3. Architectural Illustration
Figure 2 illustrates the overall architecture. The

input vector is fed into both the gating and expert
networks. The gating network computes soft weights
for each expert, and the final output is the weighted
sum of the expert outputs.

4.4. Advantages for Reactive Flow Model-
ing

The MoE framework offers several advantages
for modeling reactive flows. First, it is dynamic-
ally adaptive and can respond to varying chemical
regimes. Second, it promotes functional specializ-
ation: Each expert learns to make accurate predic-
tions within a specific subdomain. This does not
lead to a division of the physical space among the
experts. Rather, each expert becomes a good pre-
dictor for a part of the thermochemical data space
spanned by the two sets of the input and output vari-
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Figure 2. Schematic of the Mixture of Experts
(MoE) model (adapted from [14]). The input vec-
tor X is processed by a gating network that pro-
duces a soft distribution over n experts. Each ex-
pert yields an independent output vector, and the
final output Y is computed as their weighted sum.

ables—specifically the distribution of net production
rates as a function of species concentrations and tem-
perature. Third, the use of softmax-based weighting
ensures a smooth transition between expert outputs,
preserving numerical stability. Finally, the modu-
lar architecture is scalable and can accommodate ad-
ditional species or features with minimal structural
modifications.

4.5. Network Implementation Details
In our implementation, the input vector includes

the mass fractions of five chemical species (exclud-
ing N2), the temperature T , and its reciprocal 1/T ,
for a total of seven input features. The output vec-
tor contains the net production rates of the same five
species.

Prior to training, both input and output values
are normalized using Min-Max scaling. The MoE
model includes five expert networks and a single gat-
ing network. Each expert comprises three hidden
layers with 16 ReLU units per layer, followed by
a linear output layer with five neurons. The gating
network consists of one hidden layer with 32 ReLU
units, followed by a softmax-activated output layer
with five neurons to produce the expert weights.The
entire dataset is divided into three parts. First, 20% of
the data is set aside and not used until the final testing
phase. The remaining 80% is then further split: 80%
of it is used for training the model, and the remaining
20% is used for cross-validation.

The model is trained using the Adam optimizer
and a mean squared error loss. Figure 3 compares the
outputs of the trained model against reference values
computed using CANTERA. As shown, the model
accurately predicts source terms for unseen test data.

5. RESULTS AND DISCUSSION
In this section, we present the results of numer-

ical simulations performed with the neural network-
based thermochemistry model integrated into the
OpenPhase solver. All simulations are carried out
using OpenPhase, with the thermochemical source
terms computed either from the trained neural net-
work (NN) or using detailed chemistry from Cantera

Figure 3. Comparison of net production
rates of species obtained from model prediction
versus reference source terms computed with
CANTERA for the test set.

for comparison. In all test cases, the combustion of
a premixed methane/air mixture is simulated under
stoichiometric conditions. The chemical kinetics are
modeled using the reduced BFER mechanism, which
offers a simplified yet sufficiently accurate depiction
of essential combustion phenomena. Although the
BFER mechanism is relatively compact, the advant-
ages of employing a neural network (NN) framework
become even more pronounced when applied to more
complex kinetic mechanisms, where the computa-
tional overhead of traditional solvers such as Cantera
increases significantly, while a trained NN can eval-
uate source terms with greater computational effi-
ciency.

To evaluate the performance of the NN-based
model, we consider two test cases: (i) a one-
dimensional freely propagating flame, and (ii) a
flame propagating through a packed bed of solid cyl-
inders.

5.1. One-Dimensional Flame Propagation

This test case simulates a freely propagating pre-
mixed flame in a one-dimensional domain. The ini-
tial setup consists of two regions: the left half con-
tains a stoichiometric methane-air mixture, while the
right half is filled with burnt combustion products.
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An initial temperature perturbation is applied at the
center to initiate ignition. The flame then propagates
until a steady-state profile is achieved. The simula-
tion parameters are summarized in Table 1.

Table 1. Simulation parameters for the one-
dimensional freely propagating flame case

Parameter Value
Inlet temperature 300 K
Pressure 1 atm
Equivalence ratio 1.0
Spatial resolution 1 × 10−5m
Time step 2 × 10−8 s
Convective scheme van Leer
Diffusion scheme Central differencing
Fuel mixture Methane/air
Chemical mechanism BFER

Figure 4 shows the steady-state profiles of major
species mass fractions obtained using the NN model
and the detailed Cantera-based chemistry. Five key
species are considered: CH4, O2, CO2, H2O, and CO.
The results from both models are in close agreement,
indicating accurate prediction of species consump-
tion and product formation.

Figure 4. Comparison of species mass fraction
profiles for the one-dimensional flame. Results
from the NN model and Cantera are shown for
CH4, O2, CO2, H2O, and CO.

In Figure 5, we compare the temperature pro-
files and heat release rate (HRR) for both models.
The HRR peak location corresponds to the flame
front and shows excellent agreement between the two
approaches. The flame thickness and temperature
rise are nearly identical, further confirming the NN

model’s accuracy in predicting the flame structure.

Figure 5. Comparison of temperature and
heat release rate profiles for the one-dimensional
flame. The peak of the HRR curve represents the
flame front location.

5.2. Flame Propagation in a Packed Bed
The second test case models the propagation of

a premixed flame through a two-dimensional domain
filled with solid cylinders, representing a packed bed.
The computational domain is initially divided into
two parts: the lower region contains a stoichiometric
methane-air mixture, while the upper region contains
combustion products. A small velocity is imposed at
the inlet to allow the flame to propagate upstream to-
ward the boundary. The simulation setup is summar-
ized in Table 2.

Table 2. Simulation parameters for the flame
propagation in a packed bed

Parameter Value
Inlet temperature 300 K
Equivalence ratio 1.0
Inlet boundary Fixed velocity
Outlet boundary pressure outlet
Solid wall condition No-slip, adiabatic
Spatial resolution 2.5 × 10−5 m
Time step 2 × 10−7 s
Convective scheme van Leer
Diffusion scheme Central differencing
Fuel mixture Methane/air
Chemical mechanism BFER

Figure 6 presents a sequence of snapshots show-
ing the temporal evolution of the flame as it propag-
ates through the packed bed. The flame front in-
teracts with the solid structures, leading to local
curvature changes that affect propagation dynamics.
The NN-based and Cantera-based results are com-
pared side-by-side to highlight differences in flame
behavior and methane consumption.

Overall, both test cases demonstrate that the
neural network model captures key features of com-
bustion dynamics with good fidelity compared to de-
tailed chemistry. Although the BFER mechanism is
relatively simple, the NN-based approach offers sig-
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Figure 6. Temporal progression of the flame front
and methane mass fraction within the packed bed
domain. The simulation employs a low inlet velo-
city at the lower boundary, with a pressure outlet
condition specified at the upper boundary. Peri-
odic boundary conditions are enforced along the
lateral boundaries. Results are presented for the
Cantera-based model (top row) and the neural
network (NN) model (bottom row).

nificant potential for scaling to larger mechanisms
and for deployment on GPU architectures — a dir-
ection we plan to explore in future work.

6. CONCLUSION
This work introduces a Mixture of Experts

(MoE) neural network framework for efficient and
accurate prediction of chemical source terms in react-
ive flow simulations. By leveraging multiple special-
ized expert networks and a gating network that adapt-
ively partitions the thermochemical space, the pro-
posed model captures the complex, nonlinear beha-
vior of chemical kinetics across a wide range of com-
bustion regimes. This data-driven approach elimin-
ates the need for rigid zone definitions and improves
flexibility compared to traditional surrogate models.

Trained on high-fidelity data from detailed
chemical solvers such as Cantera, the MoE model
demonstrates strong agreement with reference res-
ults. In addition to maintaining high accuracy, the
architecture can significantly reduce computational
overhead for large and stiff reaction mechanisms.
Unlike traditional libraries, which are not GPU-
compatible, the neural network-based implementa-
tion enables efficient inference on CUDA-capable
hardware. This makes the method well-suited for
large-scale, high-fidelity simulations, such as those
encountered in DNS and LES of turbulent combus-
tion.

Future work will focus on extending this ap-
proach to more complex mechanisms, incorporating
advanced clustering strategies for expert assignment,
and applying the framework to multi-dimensional
flow configurations. Overall, the MoE architecture
represents a promising step toward scalable, GPU-
accelerated reactive flow modeling that preserves the
fidelity of detailed chemistry while enabling real-
time performance.

ACKNOWLEDGEMENTS
Funded by the Deutsche Forschungsgemeinsch-

aft (DFG, German Research Foundation) - Project-
ID 422037413 - TRR 287.

REFERENCES
[1] Li, K., Rahnama, P., Novella, R., and Somers,

B., 2023, “Combining flamelet-generated man-
ifold and machine learning models in simula-
tion of a non-premixed diffusion flame”, En-
ergy and AI, Vol. 14, p. 100266.

[2] Readshaw, T., Franke, L. L., Jones, W., and
Rigopoulos, S., 2023, “Simulation of turbu-
lent premixed flames with machine learning -
tabulated thermochemistry”, Combustion and
Flame, Vol. 258, p. 113058.

[3] Luo, L., Liu, Q., Sun, J., and Huang, Y., 2025,
“Exploring surface reaction mechanism using
a surface reaction neural network framework”,
Chemical Engineering Science, Vol. 306, p.
121307.

[4] Chi, C., Janiga, G., and Thévenin, D., 2021,
“On-the-fly artificial neural network for chem-
ical kinetics in direct numerical simulations
of premixed combustion”, Combustion and
Flame, Vol. 226, pp. 467–477.

[5] Zhang, T., Yi, Y., Xu, Y., Chen, Z. X., Zhang,
Y., E, W., and Xu, Z.-Q. J., 2022, “A multi-scale
sampling method for accurate and robust deep
neural network to predict combustion chemical
kinetics”, Combustion and Flame, Vol. 245, p.
112319.

[6] Zhang, S., Zhang, C., and Wang, B., 2024,
“CRK-PINN: A physics-informed neural net-
work for solving combustion reaction kinet-
ics ordinary differential equations”, Combus-
tion and Flame, Vol. 269, p. 113647.

[7] Wu, J., Zhang, S., Wu, Y., Zhang, G., Li,
X., and Zhang, H., 2025, “FlamePINN-1D:
Physics-informed neural networks to solve for-
ward and inverse problems of 1D laminar
flames”, Combustion and Flame, Vol. 273, p.
113964.

[8] Ji, W., and Deng, S., 2021, “Autonomous Dis-
covery of Unknown Reaction Pathways from
Data by Chemical Reaction Neural Network”,

7
Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors



The Journal of Physical Chemistry A, Vol.
125 (9), pp. 1990–1999.

[9] Owoyele, O., Kundu, P., and Pal, P., 2021,
“Efficient bifurcation and tabulation of multi-
dimensional combustion manifolds using deep
mixture of experts: An a priori study”, Com-
bustion and Flame, Vol. 226, pp. 203–215.

[10] Poinsot, T., and Veynante, D., 2005, Theoret-
ical and numerical combustion, RT Edwards,
Inc.

[11] Franzelli, B. G., 2011, “Impact of the chemical
description on direct numerical simulations and
large eddy simulations of turbulent combustion
in industrial aero-engines”, Ph.D. thesis, INPT.

[12] Hosseini, S. A., Safari, H., Darabiha, N.,
Thévenin, D., and Krafczyk, M., 2019, “Hy-
brid lattice Boltzmann-finite difference model
for low Mach number combustion simulation”,
Combustion and Flame, Vol. 209, pp. 394–404.

[13] Chi, C., Janiga, G., and Thévenin, D., 2021,
“On-the-fly artificial neural network for chem-
ical kinetics in direct numerical simulations
of premixed combustion”, Combustion and
Flame, Vol. 226, pp. 467–477.

[14] Alazizi, A., Habrard, A., Jacquenet, F., He-
Guelton, L., and Oblé, F., 2020, “Dual se-
quential variational autoencoders for fraud de-
tection”, Advances in Intelligent Data Analysis
XVIII: 18th International Symposium on In-
telligent Data Analysis, IDA 2020, Konstanz,
Germany, April 27–29, 2020, Proceedings 18,
Springer, pp. 14–26.

8
Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors


	Introduction
	Mathematical Model
	Data Generation
	Neural Network Architecture
	Problem Formulation
	Loss Function and Training Strategy
	Architectural Illustration
	Advantages for Reactive Flow Modeling
	Network Implementation Details

	Results and Discussion
	One-Dimensional Flame Propagation
	Flame Propagation in a Packed Bed

	Conclusion

