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ABSTRACT 

It has been hypothesised in the literature that 

secondary flows play a role in intracranial aneurysm 

formation. [1], [2] Complex flow fields develop 

inside the arteries, affected by several parameters. 

The irregular shape of the blood vessels means that 

the effects of the geometry features, such as bends or 
cross-section changes are superposed. The 

complexity of the flow-field is further increased by 

the pulsatile nature of the blood flow. 

The aim of this research is to better understand 

the relationship between the geometry and the 

developed flow-field in the case of intracranial 

arteries. Artificial models were created, where the 

cross-section was assumed to be constant and 

circular. The models consisted of two bends with a 

straight section between them. During the study 

several parameters were changed in the model. These 
include the diameter of the pipe, the radii of the 

bends, the length of the straight section between the 

bends and finally the Reynolds number. All the 

parameter ranges were selected to correspond to 

those in real vessels. CFD simulations were carried 

out on the models using Ansys CFX.  

The study is limited by the number of bends and 

the number of configurations. The simulations were 

steady state, the transient effects of the pulsatile flow 

were not studied. Future work can expand on this 

research by improving on these limitations or by 
increasing the number of bends. 

Keywords: Aneurysm, haemodynamics, CFD, 

CFX, Secondary flow, Python 

NOMENCLATURE 

 

Fr [-] frenet unit vector 

r [-] vector 

p [-] arbitrary point in plane 

rc [-] centreline point in plane 

v [m/s] absolute velocity vector 

 

Subscripts and Superscripts 

 
n, b, t normal, binormal, tangent components of 

the Frenet system 

ax axial velocity 

sec secondary velocity 

rad radial component 

circ circumferential velocity 

x, y, z axes 

1. INTRODUCTION 

Aneurysms are malformations of the blood 

vessel wall. Two shapes are known. One is the so-

called fusiform aneurysm. These form on arteries in 

the abdomen, the artery grows out radially in all 

directions. The other form is the saccular aneurysm. 

These are typical inside the brain. A sac grows on the 

side of the blood vessel, and it is connected to it with 
a smaller neck section.  

Aneurysms might not influence the patient and 

may go unnoticed for long times as they do not have 

distinctive symptoms. Their danger lies in the 

rupture of the sac. The rupture of the sac can lead to 

stroke. Stroke is still one of the leading sources of 

death in the world. With the use of modern digital 

medical imaging technologies getting more common 

more aneurysms are discovered. Once discovered, 

the aneurysm can be treated effectively. Modern 

treatments use flow diverter stents, which are a web-
like structure made of biocompatible metal alloys. 

These are placed in the artery at the neck of the 

aneurysm using a catheter. Another common method 

is coiling, when a thin metal wire is coiled inside the 

sac itself. Both of these methods reduce the velocity 

of the blood inside the sac, so that it starts to 

coagulate, and then the aneurysm may disappear. 

Both methods are endovascular procedures, in 

contrast to older open surgery methods.  

As aneurysms do not have distinctive symptoms 

they are often discovered by accident. Thus, their 
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formation and development are not well understood. 

There are several theories on the cause of the 

aneurysm initiation. The initiation and growth of the 

sac are complex biomechanical processes. It is also 

believed that elevated secondary flows also play a 

role in the formation of the aneurysm sac.  

Secondary flows exist in many fields of fluid 

dynamics. Everywhere it means a flow which is 
perpendicular to the main flow direction. The 

importance of secondary flows varies among the 

various fields of fluid dynamics. For example, in 

river flows they are well studied. The secondary 

flows play an important role in the movement of 

sediment in the river. In the case of mixing vessels, 

the vertical circulation of the liquid is also a 

secondary flow. Secondary flows also develop inside 

pipe networks. Most often bends in the pipe induce 

the secondary flow, but valves and pumps can also 

do it. In most engineering cases secondary flows 
inside a pipe are disadvantageous. Therefore, most 

studies focus on their reduction or dissipation.  

A mathematical approach was proposed by Dean 

back in 1927 [3]. He assumed a pipe with circular 

cross-section, constant diameter and bend radius. 

The work also assumed the radius of the bend to be 

large compared to the radius of the cross section of 

the pipe. It also assumed the Reynolds number to be 

small and the flow to be steady state. 

Later research expanded on the work of Dean by 

focusing on pulsatile flows in curved pipes. The flow 
varied in a sinusoidal manner. It had similar 

limitations as the work by Dean. It was again 

assumed that the curvature of the pipe bend was 

bigger than the radius of the cross-section of the pipe. 

[4], [5] 

Physiological curved geometries often are non-

planar, and thus have torsion besides curvature. 

Researchers also investigated the effects of torsion 

on the secondary flows. Yamamoto et al. [6] 

investigated the effects of torsion numerically in a 

steady flow. Others demonstrated [7], [8], [9] in 

helical pipes that torsion causes asymmetric Dean 
vortices in the cross section of the pipe. The vortex 

in one half becomes bigger, while the other becomes 

smaller. Nijjari et al. [10] investigated pulsatile flows 

in a curved pipe bend with torsion with elastic walls.  

The above-mentioned research only focused on 

helical vessels or singular pipe bends. The radius of 

the bend was constant, and larger than the radius of 

the cross-section. However, in physiological blood 

vessels several bends can occur in a short distance, 

which may influence the development of the 

secondary flows in the next bend downstream. The 
radius of the bend might not be constant throughout 

the bend.  

This paper aims at investigating the 

superposition of bends within a short distance of 

each other and their effect on the developing 

secondary flows using computational fluid dynamics 

(CFD). 

2. METHOD 

In order to investigate the superposition of pipe 

bends and their effect on the secondary flows a 

simple geometry was created. The geometry had 

several parameters, and a parametric study was 

made.  

 

Figure 1. Parameters of the geometry, in blue the 

zero point for the post-processing coordinate-

system 

The geometry is a pipe with a circular cross-

section and consists of straight and curved sections. 

The curved sections were each a 90° bend in opposite 

directions. Between the pipe bends there was a 
straight section. Before the first bend and after the 

second bend straight sections were made with 20 

diameters in length. This was done to ensure a fully 

developed flow to arrive at the first bend, and to 

observe the dissipation of the secondary flows after 

the second bend. The geometry was created using 

FreeCAD 0.21.2 via the Python API. The geometry 

had the diameter of the pipe 𝐷, the radii of the bends 

𝑅1, 𝑅2 and the length of the straight section between 

the bends 𝑥1 as parameters. These can also be seen 

in Figure 1. The geometries were exported as an open 

surface mesh in the .stl format.  

Meshing of the geometries was carried out with 

the Vascular Modelling Toolkit (VMTK) Python 

package. The mesh had an element size of 0.3 mm 

with tetrahedral elements. The inflation on the wall 

consisted of 8 layers, with a growth ratio of 1.25. The 

mesh settings were identical for all the cases. For the 

CFD simulations Ansys CFX 23R2 was used. The 

simulations were steady state. The fluid chosen was 

water. The inlet was set up as a velocity inlet, with a 
parabolic velocity profile. The mean velocity of the 

profile was calculated from the Reynolds-number 

prescribed for the given simulation. As the possible 

maximum Reynolds-number in the parameter set 

was 800, no turbulence model was used. The outlet 

was set as an opening with 0 Pa. The walls were rigid 

and set as non-slip walls.  

The parameters of the study were the diameter of 

the pipe (D), the radii of the pipe bends (R), the 

length of the straight section between the bends (x1) 

and the Reynolds-number (Re). The radii for the pipe 
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bends were the same for a given case, so the 

geometry is centrally symmetrical. They were 

defined using the R/D ratio. The value of x1 was also 

made dimensionless using the diameter of the pipe. 

The ranges were selected, based on data from real 

arteries used in previous research. The range and 

increments of the parameters can be seen in Table 1. 

By multiplying the number of possible values for 
each the total number of cases is 990.  

Table 1. Ranges and increments of the 

parameters 

Parameter Minimum Maximum Increment 

D [mm] 3 5 1 

R/D [-] 1 10 1 

x1 [-] 0 10 1 

Re [-] 100 800 350 

 

The parametric study was run using the Dakota 

open-source package. It managed the running of the 

cases, including modifying the scripts and 

commands necessary for running the simulations and 

post-processing. It also managed running the cases 

parallelly, thus greatly reducing the time required for 

running all the cases.  

3. POST-PROCESSING 

The post-processing was carried out using 

Paraview 5.10.1 and custom in-house built Python 

scripts. The post-processing focuses on the 
decomposition of the velocity field into secondary 

components. The decomposition is done using 

Frenet frames along the centreline of the geometry. 

A clear understanding of the Frenet frames is 

essential. 

For each geometry a centreline can be 

calculated. Along this centreline, at any given point 

an orthogonal coordinate-system can be defined. In 

case of a Frenet-system each of the three axes point 

to a specified direction. The Frenet tangent vector 

𝐹𝑟̲̲ 𝑡̲  is parallel to the tangent of the centreline at that 

point. The Frenet normal vector 𝐹𝑟̲̲ 𝑛̲ is perpendicular 

to the Frenet tangent vector, and points towards the 

centre of the tangent circle of the centreline. The 

third axis is the Frenet binormal vector 𝐹𝑟̲̲ 𝑏̲ and is 

perpendicular to the other two axes. All of them are 

unit vectors. By using the Frenet normal and 

binormal vectors a plane can be defined. The 

geometry can be sliced with this plane. All further 

calculations were carried out on these slices.  

The centreline was defined according to the 
geometrical parameters. The centreline was sampled 

at 0.1 mm intervals. A Python script calculated the 

Frenet unit vectors at each point.  

The velocity field can be decomposed into an 

axial component and a secondary component. The 

first are parallel to the centreline, while the second 

are perpendicular to it, and lies in the plane of the 

slice. The axial component is calculated first using 

the Frenet tangent vector as can be seen in Eq. (1). 

Using Eq. (2) the secondary component can be 

calculated by subtracting the axial component, 𝑣̲𝑎𝑥, 

from the velocity vector 𝑣.  

 

𝑣̲𝑎𝑥 = (𝑣̲ ∙ 𝐹𝑟̲̲ 𝑡̲) ∙ 𝐹𝑟̲̲ 𝑡̲  (1) 

 

𝑣̲𝑠𝑒𝑐 = 𝑣̲ − 𝑣̲𝑎𝑥 (2) 

 

The secondary velocity is in the plane of the slice 

it can be further decomposed into two components. 

Given the circular cross-section switching to a polar 

coordinate-system around the centreline point 𝑟𝑐 is 

beneficial. So the secondary velocity can be 

decomposed into a radial and a circumferential 

component. First a radial unit vector is calculated 

using Eq. (3) between 𝑟𝑐 and an arbitrary point 𝑝 in 

the slice. Using the radial unit vector the radial 

component, 𝑣̲𝑟𝑎𝑑 of the secondary velocity can be 

calculated as seen in Eq. (4). The circumferential 

velocity 𝑣̲𝑐𝑖𝑟 can be calculated by simply subtracting 

the radial velocity from the secondary velocity as 

seen in Eq. (5). [11] 

𝑟̲𝑟𝑎𝑑 =
𝑝 − 𝑟𝑐

|𝑝 − 𝑟𝑐|
 (3) 

 

𝑣̲𝑟𝑎𝑑 = (𝑣̲𝑠𝑒𝑐 ∙ 𝑟̲𝑟𝑎𝑑) ∙ 𝑟̲𝑟𝑎𝑑  (4) 

 

𝑣̲𝑐𝑖𝑟 = 𝑣̲𝑠𝑒𝑐 − 𝑣̲𝑟𝑎𝑑 (5) 

 

After computing the various velocity 

components in the slices, the average of each was 

computed for each slice along the centreline.  

4. RESULTS 

In the following section the findings will be 

explained, based on velocity graphs along the 

centreline between different configurations.  

As the length of the centreline varies 

considerably between different configurations, it was 

made dimensionless for the graphs. The straight 

sections of the pipe were made dimensionless with 
the diameter. For the bend sections the length of the 

arc was chosen, which is the quarter circle. The 

reference point was set to the halfway point between 

the two pipe bends, shown in blue in Fig 1. So 

negative values along the x-axis are towards the inlet, 

and positive values are towards the outlet. The inlet 

straight section is not shown on the graphs to help 

with readability. The velocity component magnitude 

averages were normalized with the average of the 

inlet velocity.  

The first grouping was done by fixing the 

diameter and the value of 𝑥1 and changing the value 

of the curvature of the pipe bends. For 𝐷 =
4 𝑚𝑚, 𝑥 1 = 0, 𝑅𝑒 = 100 the results can be seen in 

Figs. 2., 3.  

As 𝑅/𝐷  decreases, the maximum value of the 

circumferential velocity increases in both bends. 
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Figure 2. Plot of the circumferential velocity for 

𝑫 = 𝟒 𝒎𝒎, 𝒙 𝟏 = 𝟎, 𝑹𝒆 = 𝟏𝟎𝟎  

This is because a higher 𝑅/𝐷 ratio means the 

bend is shallower. An infinitely high ratio would 

mean straight pipe, where no circumferential 

velocity would develop. The local maxima in the 

second bend are lower than in the first bend for 

𝑅/𝐷 = 1 and 𝑅/𝐷 = 2. For the other two 

configurations the maxima in the two bends are 

equal. With the exception of 𝑅/𝐷 = 10, the velocity 

in both bends have distinct maximum, while 𝑅/𝐷 =
10 has the shape of a plateau. In the second bend the 

location of the maximum moves towards the end of 

the bend as 𝑅/𝐷 decreases. The circumferential 

velocity dissipates faster for 𝑅/𝐷 = 1, as in the other 

cases, while having the highest maximum in the 

second bend.  

The radial velocity graph shows similar findings 

to the circumferential ones. 𝑅/𝐷 = 1 and 𝑅/𝐷 = 2 
have lower local maximum values in the second 

bend, though the values are similar despite the 

difference in the maxima in the first bend.  The local 

maxima are further towards the end of the bends in 

both bends. For 𝑅/𝐷 = 2 and 𝑅/𝐷 = 5 a secondary 

rise can be seen at the end of the first bend. This rise 

in radial velocity also appears in the second bend for 

𝑅/𝐷 = 5 with a lower value than in the first bend. 

After the second bend the radial velocity decreases 

in a similar manner for all the different 𝑅/𝐷 ratios.  

With the increase of the Reynolds-number to 

800 both graphs change considerably. The graph for 

the circumferential velocity can be seen in Fig. 4. and 

Fig. 5. The maxima are higher than in the case of 

𝑅𝑒 = 100, meaning that relative importance of the 

secondary flows is higher than in the case of the 

lower Reynolds number.  

 

Figure 3. Plot of the radial velocity for 𝑫 =
𝟒 𝒎𝒎, 𝒙 𝟏 = 𝟎, 𝑹𝒆 = 𝟏𝟎𝟎  

In both bends the maxima increases as 𝑅/𝐷 

decreases. The location of the maximum moves 

backwards in each bend as the radius decreases, 

except for 𝑅/𝐷 = 1. In this configuration in the 

second bend there are two maxima. One at the 

beginning of the bend and one at the end of the bend 

with a slight decrease between them.  

 

Figure 4. Plot of the circumferential velocity for 

𝑫 = 𝟒 𝒎𝒎, 𝒙 𝟏 = 𝟎, 𝑹𝒆 = 𝟖𝟎𝟎  

As for the second bend, the local maxima are 

smaller than in the first bend for all configurations. 
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The dissipation of the circumferential velocity takes 

longer and differs more between the different 

𝑅/𝐷 ratios. The longer dissipation is probably 

caused by the higher relative velocity values.  

 

Figure 5. Plot of the radial velocity for 𝑫 =
𝟒 𝒎𝒎, 𝒙 𝟏 = 𝟎, 𝑹𝒆 = 𝟖𝟎𝟎  

The plot of the radial velocity shows the radial 

velocity in comparable range to Fig. 3. This is in 

contrast with the circumferential velocity, where 

with the increase of the Reynolds number the relative 

velocity increased. The maximum in the first bend 

moves backwards as the 𝑅/𝐷  ratio decreases, and 

the increases as 𝑅/𝐷  decreases. In the second bend 
the local maxima are lower than in the first bend for 

all configurations. After the second bend increases in 

the radial velocity can be observed for 𝑅/𝐷 = 1 and 

𝑅/𝐷 = 2  

The effect of the length of the straight section 

was also investigated. The results will be shown for 

𝑅/𝐷 = 5, as it is the shows the trends the best. The 

first graph in Fig. 6. shows the circumferential 

velocity for 𝑅𝑒 = 100. The graphs show identical 

trends in the two bends and between each other too. 

Also visible is that with the increase of 𝑥1 the 

minimum value between the two bends decreases. 

The radial velocity graph seen in Fig. 7. shows 

similar results to Fig 6. The trends look nearly 

identical between the different configurations and 

between each other. As expected, the minimum 

between the bends decreases as 𝑥1 increases. The 

difference is that the radial velocity graphs have a 
secondary peak in each bend. 

 

Figure 6. Plot of the circumferential velocity for 

𝑫 = 𝟒 𝒎𝒎, 𝑹/𝑫 = 𝟓, 𝑹𝒆 = 𝟏𝟎𝟎 

For 𝑅𝑒 = 800 the circumferential velocity graph 
is shown in Fig. 8. The results for the first bend show 

matching shapes for each configuration. The 

minimum between the bends decreases as 𝑥1 

increases, as seen in the case of 𝑅𝑒 = 100. The 

results for the second differ though. The maxima are 

lower than in the first bend. It also increases as 𝑥1 

increases. The relative velocity maxima is two times 

higher than in the case of 𝑅𝑒 = 100. 

 

Figure 7. Plot of the radial velocity for 𝑫 =
𝟒 𝒎𝒎, 𝑹/𝑫 = 𝟓, 𝑹𝒆 = 𝟏𝟎𝟎 
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Figure 8. Plot of the circumferential velocity for 

𝑫 = 𝟒 𝒎𝒎, 𝑹/𝑫 = 𝟓, 𝑹𝒆 = 𝟖𝟎𝟎 

The results for the radial velocity can be seen in 

Fig. 9. The results show similarities to both Fig 8. 

and Fig. 7. The shape of the graphs for the first bend 

are nearly identical. The minimum between the 

bends decreases as 𝑥1 increases. The maxima in the 

second bend are again lower, than in the first bend, 

and increases as 𝑥1 increases. The range is again 

similar to the case of 𝑅𝑒 = 100 and thus lower than 
the range of the circumferential velocity.  

 

Figure 9. Plot of the radial velocity for 𝑫 =
𝟒 𝒎𝒎, 𝑹/𝑫 = 𝟓, 𝑹𝒆 = 𝟖𝟎𝟎 

However, the shapes between the first and 

second bend do not look as similar as in Fig. 7. The 

exception is 𝑥1 = 10. The second rise up in velocity 

is not present in the second bend.  

5. SUMMARY 

The goal of the paper was to explore the effects 

of two pipe bends in opposite directions on 

secondary flows. A simple geometry was created 

which consisted of two 90° pipe bends with a straight 

section between them. It had three parameters which 
were changed. The flow was studied by steady state 

CFD simulations at different Reynolds-numbers. All 

the parameters were chosen to reflect real 

morphological data, to support research regarding 

the effect secondary flows on cardiovascular 

diseases.  

At low Reynolds-number the first bend has less 

effect on the second one in most configurations. The 

exceptions for both in terms of radial and 

circumferential velocity happen when 𝑥1 = 0 and the 

bends have a radius of 𝑅/𝐷 = 1 and 𝑅/𝐷 = 2. In 

these cases, the maximum values were lower than in 

the first bend. The radial and circumferential 

velocities were in the same range. At 𝑅𝑒 = 800 the 

first bend affected the developed flow noticeably. 

The local maxima in the second bend were smaller 

than in the first bend. This effect was stronger when 

𝑥1 was small. As 𝑥1 increased the maxima in the 

second bend increased. As the bends were in 

opposite directions, they induce vortices in opposing 
rotating directions. So, the second bend first must 

slow down the vortices from the first bend and then 

starts to induce vortices in the opposite direction, 

hence the lower maximum values. Increasing the 

distance between the bends allows the secondary 

flows to dissipate more, thus the second bend can 

induce faster secondary flows. But even with the 

distance of 10 diameters, the maxima for both 

secondary velocity components were lower than in 

the first bend. With the increase of the Reynolds-

number and in turn the velocity, the relative 

circumferential velocity increased considerably 
more than the relative radial velocity. The relative 

radius of 𝑅/𝐷 affected the location of the maximum 

secondary velocity location inside the bend.  

In conclusion the first bend has a significant 

effect on the flow in the second bend, particularly at 

higher Reynolds-numbers. The distance between the 

bends also plays a crucial role in the strength of 

secondary flows in the second bend. The relative 

radius affects both the strength of the secondary 

flows and the location of the maxima inside the bend. 
These findings have implications for understanding 

the development of cardiovascular diseases, 

particularly in relation to aneurysm formation. The 

exact location of the secondary flow maximum is of 

interest as elevated secondary flows show correlation 

with aneurysm formation. [12] 
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The research can be extended to include more 

configurations, like non-planar cases or bends with 

non-constant radius. The effect of oscillatory and 

pulsatile flow may also be worth considering.  
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