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ABSTRACT
Hemodynamics, the study of blood flow dy-

namics, is a fundamental aspect of cardiovascular
physiology, governing the delivery of oxygen and
nutrients to tissues. A critical mechanism, ensuring
stable blood flow under varying conditions, such as
changes in blood pressure, is autoregulation. The
myogenic response, a cornerstone of autoregulation,
involves the contraction of arterioles in response to
increased intravascular pressure, thereby stabilizing
blood flow. Similarly, metabolic responses regulate
vascular tone in accordance with the metabolic de-
mands of tissues, ensuring an adequate supply of
oxygen [1].

This study introduces refined mathematical mod-
els of regulatory mechanisms, implemented within
a one- and zero-dimensional hemodynamics solver,
first_blood[2]. The simulation mimics the body’s
response to changes by considering the peripheral
resistances varying. Simulation results are system-
atically evaluated against established physiological
knowledge. The findings demonstrate that the sim-
ulations can reproduce the behaviour of the control
mechanisms. Specifically, the myogenic and meta-
bolic response models yielded qualitatively accurate
results. Future work will focus on validation with
clinical in-vivo measurement data.

Keywords: metabolic control, myogenic control,
haemodynamics, one- and zero-dimensional sim-
ulations

NOMENCLATURE
C Oxygen concentration

[
m3

m3

]
G Static gain [1]
R Vascular resistance

[
m3

m3

]
M Maximum oxygen consumption rate[

m3(O2)
s·m3(plasma)

]

a Inner vessel radius [m]
b Outer vessel radius [m]
c A constant parameter [m2]
f Parameter of a sigmoid curve

[
1

Pa

]
or
[

m3

m3

]
k A constant parameter [1]
u A constant parameter [1]
p Pressure [Pa]
t Time [s]
x Independent variable of a sigmoid curve

[Pa] or [s]
σθ Circumferential wall tension [Pa]

Subscripts and Superscripts
fact Scaling factor
max Maximal value
met Metabolic
min Minimal value
myo Myogenic

1. INTRODUCTION
The human circulatory system is responsible for

transporting viable nutritions, ions, oxygen, etc. to
the tissues. Maintaining blood flow and pressure is
inevitable to keep the body functional. Although the
complexity of blood flow regulation is high, model-
ling of such phenomena might help in understand-
ing the fundamental operations, in decision-making
or diagnose. Besides physiological and hormonal
effects, three major control mechanisms influence
blood pressure: myogenic, metabolic and neural.
While the neural one uses baroreceptors from vari-
ous locations of the arterial network controlling the
heart, the former two are local mechanisms effecting
only the diameter of arterioles.

In suboptimal conditions (e.g., low blood pres-
sure or low tissue O2 (oxygen) levels), the system at-
tempts to correct this through regulation mechanisms
that control the amount of blood flowing through the
capillaries. Local regulation consists of two main
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phenomena: myogenic and metabolic mechanisms
that operate indepedently. The former responds to
changes in blood pressure, while the latter responds
to changes in the chemical composition [1], from
which, the study focuses on the O2 level. This work
aims to capture the known and accepted characterist-
ics of these processes. It also applies the O2 transport
modelling, that is also presented at this conference,
titled "Modelling the transport of oxygen in the hu-
man vascular system".

Arteries are responsible for delivering oxygen-
ated blood to organs and tissues. These vessels vary
in diameter and length, with each type serving a dif-
ferent purpose. Smaller arterial vessels include ar-
terioles, terminal arterioles, and capillaries, with dia-
meters of 20-200 µm, 8-20 µm, and 4-7 µm, respect-
ively. Larger arteries have relatively low vascular res-
istance, contributing about 10% to the total vascular
resistance, while small arteries and arterioles contrib-
ute 50-55%, capillaries 30-35%, and the rest comes
from venules and veins [3].

When considering autoregulation, the brain of-
ten comes to mind first, as it is one of the most vital
organs in the body. The blood supply to the intracra-
nial system is therefore a high priority, with a numer-
ical value around 50−60 ml

min 100 g , around 20% of the
cardiac output when the body is at rest [4]. Cerebral
autoregulation can be seen as the body’s attempt to
maintain this value under various conditions. Phys-
icians often use the mean arterial pressure - cereb-
ral blood flow (MAP-CBF) diagram to represent this
phenomenon.

According to the original theoretical cerebral
autoregulation curve, for a MAP value between 60
and 150 mmHg (the lower and upper limit of autore-
gulation), CBF remains almost constant as shown by
Figure 1. This theory was described by Lassen in
1959. The classic autoregulation curve was later re-
jected. The updated autoregulation curve has a sim-
ilar shape, but its width is different. Recent studies
suggest that the plateau is much narrower, around
5 − 10 mmHg. It is also unclear whether the autore-
gulation curve is symmetric, as the brain might re-
spond better to an increase in MAP than to a de-
crease. Obtaining the real curve is challenging, as
measuring CBF has its own difficulties. Two com-
mon methods, Doppler ultrasound and magnetic res-
onance imaging, both have considerable measure-
ment uncertainties [4], [5].

1.1. The myogenic response
The myogenic response is observed in arterioles

that supply blood to the brain and heart, among other
organs. It works as follows: when blood pressure in-
creases, the vessel wall initially expands. If the pres-
sure remains constant, the vessel then contracts, of-
ten to a diameter smaller than its original size [6].
This contraction increases blood flow velocity and
decreases pressure. The vascular resistance of ves-
sels depends heavily on their diameter (R ∼ 1

d4 ), so

Figure 1. The original CBF-MAP curve.

by adjusting the diameter based on pressure, the body
can regulate blood flow distribution to tissues and ca-
pillary pressure. Increased and maintained pressure
in resistance arteries and arterioles causes these ves-
sels to contract, a phenomenon known as the myo-
genic response. The steady-state response of these
vessels is called myogenic tone. These mechanisms
contribute to the autoregulation of blood flow in the
brain, heart, skeletal muscles, and other organs [6].

Despite their importance, not all aspects of these
biological functions are fully understood due to their
complexity. Processes involving G-protein coupled
receptors and ion channels, among others, play a role
in the development of myogenic tone and response.
The goal of mathematical modelling is not to en-
compass the entire process but focuses on establish-
ing a direct relationship between pressure and peri-
pheral resistance based on documented observations
by physicians [6]. Mathematical models for myo-
genic autoregulation already exists in the literature
[7], [8].

1.2. The metabolic response
Cells use Adenosine triphosphate (ATP) as a

source of energy. ATP is typically produced through
either oxidative phosphorylation or glycolysis, with
the body preferring the former, which requires O2.
For this reason the body is in continuous need for
O2. O2 demand can change for various reasons, in-
cluding the onset of exercise. If the O2 supply is in-
sufficient, meaning that it does not match the need of
the tissues, adenosine is produced. Adenosine, along
with other substances produced as metabolic waste,
causes vasodilation. Therefore, if the O2 concentra-
tion is lower than needed, the vessels dilate, reducing
their vascular resistance and allowing a larger blood
flow to the tissue, increasing the O2 supply. Literat-
ure suggests that the surface area responsible for O2
diffusion also increases during exercise, increasing
the amount of O2 that can diffuse from the plasma to
the tissues. This process results in a balance between
the new level of O2 demand and supply [1] [3].

The paper presents a comprehensive approach to
simulate myogenic and metabolic blood flow regula-
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tion, integrating insights from both literature research
and mathematical modeling. The main objective of
this work is to develop first_blood, a zero- and one-
dimensional hemodynamic solver [2]. Researches
regarding the control mechanisms could have real-
world impact on medical research and clinical prac-
tice in the future. By advancing our ability to sim-
ulate these processes, it may pave the way for bet-
ter diagnostic methods, targeted therapies, and new
treatments for vascular disorders. The results of the
simulations are thoroughly evaluated and discussed
in the context of existing knowledge. The findings
suggest that the simulations can mimic the behavior
of the control mechanisms discussed, the myogenic
and metabolic response models provide qualitatively
correct results.

2. METHODS

2.1. Classic hemodynamic model

The model consists of large vessels modeled as
axisymmetric tubes in one dimension (1D), which
build up a vascular tree. The geometrical parameters
(for example, diameter and length values) are taken
from [9]. The vessels are elastic, and the relation-
ship between the vessel deformation and the pres-
sure described by a nonlinear function [10]. This,
in addition to two fluid mechanics equations (the
one dimensional mass and momentum equations) are
solved with the method of characteristics and the
MacCormack scheme [11]. Some parts of the car-
diovascular system are modelled in zero dimension
(0D) using electrical elements, e.g. resistors, induct-
ors, capacitors, diodes and elastances. The smal-
ler vessels (arterioles, capillaries and venules) and
the veins are modelled using lumped models also,
each compartment is taken into account with an RLC
circuit at each periphery [12, 13]. The equations
are solved the in-house hemodynamic solver, called
first_blood [2].

2.2. Modeling the myogenic response

Figure 2. Peripheral models. Each compart-
ment (arterioles, capillaries, venulares and veins)
is modeled with an RLC circuit [12].

The simulation models the behavior of arterioles
by considering the parameters of the peripheral mod-
els varying. For example, resistances vary with geo-
metry, i.e., a smaller diameter results in higher res-
istance. In this context, the goal is to establish a re-
lationship between peripheral resistances and pres-
sure, since the myogenic response reacts to changes
in blood pressure. First, an idealized relationship

between pressure and peripheral resistance is given,
based on a few assumptions:

• The arterioles are modeled as thick-walled
tubes, since the ratio of the inner radius and the
wall thickness is around 3

4 [14].

• Since the Poisson coefficient of the vessel walls
is close to 0.5 [2], it is an acceptable approxim-
ation to consider it incompressible.

• The shortening of the vessels as a response to
increased pressure is neglected. Combining this
with incompressible wall means constant area
for the annulus.

• Theoretically the vessels response to stretch,
trying to maintain constant circumferential wall
tension despite changes in pressure [1]. We as-
sume that the body strives to keep the circumfer-
ential wall tension constant at the inner diameter
of the vessel.

• The pressure outside the arterioles is atmo-
spheric.

The circumferential wall tension for a thick
walled-tube can be written as:

σθ(u) =
pa2

b2 − a2

(
1 +

b2

u2

)
, (1)

where a and b are the inner and outer radius of the
tube, p is the internal pressure and u is the radial co-
ordinate (a ≤ u ≤ b). The third assumption above
can be written in mathematical form:

(r + h)2 − r2 = c, (2)

where c is a constant parameter, h is the wall thick-
ness and r is the inner radius of the annulus. h can be
determined as a function of r as h = −r ±

√
r2 + c

from Eq. (2). Since h, r and c are all positive,
h = −r +

√
r2 + c.

From the fourth assumption Eq. (1) should be
evaluated at u = r. The inner radius of the tube is
naturally a = r. We obtain:

σθ,0 =
pr2

b2 − r2

(
1 +

b2

r2

)
, (3)

where σθ,0 is constant. Substituting b = r + h and
h = −r +

√
r2 + c to Eq. (3) we get:

σθ,0 = p
(
1 +

2r2

c

)
. (4)

As previously mentioned a relationship between the
peripheral resistances (R) and the pressure is needed,
making the peripheral parametes time-dependent.
The resistances are inversely proportional to r4, so
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R =

(
σθ,0

p − 1
)−2

k
. (5)

Note that k is a constant parameter. After dividing
both sides with the nominal resistance we obtain:

R f act =

(
σθ,0

p − 1
)−2

k∗
, (6)

where k∗ is also a constant parameter, and R f act is
a scaling factor of the nominal resistance. To de-
termine the two constants (σθ,0 and k∗) two equations
are needed. σθ,0 can be calculated by substituting
b = r + h to Eq. (3), rearranging and using the first
assumption ( h

r ≈
4
3 if p = pre f ).

σθ,0 = p
(
1 +

2
2 h

r + ( h
r )2

)
=

29
20

pre f (7)

This provides a value for σθ,0, since pre f is a given
parameter from the reference model. k∗ can be calcu-
lated by substituting the value of σθ,0 to Eq. (6), since
R f act is 1 if p = pre f . This gives k∗ =

( 29
20 − 1

)−2
=

400
81 [1]. At this stage the theoretical idealised curve is

given with all it’s parameters and constants.
In reality the vessels can not expand or contract

without limitations, meaning that function given by
Eq. (6) is not realistic. Instead, we assume that the
system aims to follow the derived curve but fails.
A more realistic sigmoidal connection is assumed
between the pressure and the scaling factor of R:

R f act =
Rmax + Rmine− f ·xmyo

1 + e− f ·xmyo
, (8)

Eq. (6) and Eq. (8) are obviously really differ-
ent functions. So the next step is to determine the
parameters (Rmax, Rmin and f ) of the sigmoid curve
considering the derived curve given by Eq. (6). The
applied method sets the parameters so that Eq. (8) ap-
proximates the saturation values at roughly the same
points as Eq. (6).

For the slope fitting we have to give the value of
f . By matching the derivatives of Eq. (8) and Eq. (6)

at pre f we get: f = 8
Rmax−Rmin

σθ,0
p2

re f k∗

(
σθ,0
pre f
− 1
)−3

.

Since the vascular resistance is a function of the
diameter, the saturation values can be given with
the normalized diameters obtained from [15]. With
satmax = 1.773 and satmin = 0.772, Rmin and Rmax
can be determined as:

Rmin =

satmin, if xmyo < 0
2 − satmax, otherwise.

(9)

Rmax =

2 − satmin, if xmyo > 0
satmax, otherwise.

(10)

xmyo, the independent variable of the myogenic con-

Figure 3. The theoretical curve given by 6 and the
more resalistic sigmoidal curve.

trol can be calculated from p with a low-pass filter.
The differential equation for the filter is [7],

τmyo
dxmyo

dt
= −xmyo +Gmyo

(
p̄ − pre f

)
(11)

Gmyo = 0.9 is the static gain, τmyo = 40s is the time
constant of the low-pass filter, p̄ is the time-average
of the last cardiac cycle and pre f is the reference pres-
sure. For each periphery pre f is determined as the
time average of the arteriolar pressure of the last car-
diac cycle from a previous simulation (without any
autoregulation). The simulation can calculate the
scaling factor of resistances (R f act) from the refer-
ence and the actual pressure with the given model.
The arteriolar resistances are given for the next time
step.

2.3. Modeling the metabolic control
Similar to the myogenic control, a sigmoidal

connection between tissue O2 level and the peri-
pheral resistances is assumed. The saturation levels
of the sigmoid curve are the same as for the myo-
genic control since the same vessels are responsible
for these mechanisms and there is no information in
the literature to suggest otherwise according to the
author’s knowledge. Similarly to the modelling of
the myogenic response, the base simulation without
any regulation mechanisms is used as the reference.
Based on Eq. (8), the time dependent peripheral res-
istances can be determined as

R f act =
Rmax + Rmine− fmet ·xmet

1 + e− fmet ·xmet
(12)

where fmet is scaled, so that the relative central slope
is the same as in Eq. (8). The independent variable of
the metabolic control (xmet) is calculate from Ct with
a low-pass filter:

τmet
dxmet

dt
= −xmet +Gmet

(
C̄t − C̄t,re f

)
(13)

Gmet = 0.9 is the static gain, τmet = 40s is the time
constant of the low-pass filter and C̄t is the time av-
erage of Ct in the last cardiac cycle. For each peri-
phery C̄t,re f is calculated as the time average of the
tissue O2 concentration of the last cardiac cycle from
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a previous simulation (without any autoregulation).

3. RESULTS AND DISCUSSION
3.1. Results of the myogenic response

Figure Figure (4) shows the simulated CBF-
MAP curves with and without the myogenic response
for the cerebral peripheries (the myogenic response
for other peripheries were turned off for all simula-
tions). The MAP values where modified by chan-
ging the miniumun of the elastance function of the
left ventricle in the heart model that mimics the con-
traction of the heart. MAP was calculated as the
time-average of the aortic pressure, CBF (the time-
averaged volumetric flow rate of blood through the
arteries supplying the intracranial system) is relative
to the simulation computed with the base model.

A third-degree polynomial was fitted to the data
points in both cases, since this type of function is re-
commended by physicians to describe autoregulation
[16]. As expected, the myogenic response makes the
CBF-MAP curve flatter over a certain range. How-
ever, the simulated curve is not as flat as the the-
oretical CBF-MAP curve, which is usually depicted
with a more horizontal plateau. The simulation suc-
cessfully mimics the body’s behavior, meaning it at-
tempts to maintain constant blood flow under varying
conditions.

The myogenic mechanism responds to changes
in blood pressure, but the body has multiple mech-
anisms that regulate blood pressure, e.g., the barore-
flex. This means that the CBF-MAP curve observed
by physicians is influenced by numerous factors [17].
Without accounting for these other processes, the
simulated CBF-MAP curve cannot match the one
measured in humans. It is also impossible to measure
the effect of only the myogenic response in humans,
since the other responses cannot be turned on or off
independently.

Moreover, there are fairly different CBF-MAP
curves found in the literature. The uncertanities of
the CBF measurement methods (for example mag-
netic resonance imaging and transcranial Doppler ul-
trasound) are high [5], meaning that, achieving ac-
curate numerical data is challenging, and the meas-
urement error accumulates to the MAP-CBF curve.
Since the model gives qualitatively correct results
the model is found to be acceptable. In-vivo meas-
urements could give the opportunity to calibrate the
model to a for a population stochastically, or even a
patient-specific level.

3.2. Results of the metabolic response
The metabolic response can be observed when

an organ’s O2 demand increases, such as during ex-
ercise. The body responds by dilating resistance
vessels, which increases blood flow to the organ.
The increased O2 demand can be modeled by chan-
ging the O2 consumption term in the equations. To
test whether the metabolic response model accur-
ately mimics the body’s behavior, four simulations

Figure 4. Evaluated CBF-MAP curves of the
simulations. The myogenic response is only ap-
plied for the cerebral peripherals. The MAP val-
ues are modified by changing the miniumun of
the elastance function of the left ventricle in the
heart model that mimics the contraction of the
heart. MAP is calculated as the time-average of
the aortic pressure, CBF is relative to the simula-
tion computed with the base model.

are computed. First, regulation is turned off, and all
model parameters are set to their default values. In
the second scenario, regulation is turned on, but the
parameters remain the same. In the third scenario,
the maximum oxygen consumption rate is doubled,
but the metabolic response is turned off. In the fourth
scenario is still doubled, but this time, the metabolic
response is turned on. Overall every scenario is con-
sidered with the metabolic response and the modelled
exercise.

The results of these simulations are shown in
Figure (5). In the first two scenarios, the tissue
O2 concentration, the tissue oxygenation stabilizes
at the same level, as expected. However, when O2
consumption increases (in the third scenario), the tis-
sue oxygenation decreases. When the metabolic re-
sponse is activated (in the fourth scenario), the oxy-
genation increases and stabilizes between the values
from the first two and the third scenarios. These res-
ults are consistent with expectations. The increased
metabolic demand is regulated by increasing the dia-
meters of the arterioles; thus, the blood flow is in-
creased. The elevated blood flow tries to compensate
the increased demand of O2 in the tissues.

The model gives qualitatively accurate simu-
lation results. The limitation of the study is the
available in-vivo measurements. Performing in-vivo
measurement on real patients requires both physi-
cians with ethical approval, and expensive measure-
ment setup. Moreover, the available measurement
scenarios are highly limited, only certain variables
can be measured directly, and only at certain loca-
tions. However, the main objective of future research
is to collaborate with physicians and to obtain in-vivo
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measurement data. Such data gives the opportunity
to calibrate the model population- or even patient-
wise.

Figure 5. Evaluated CBF-MAP curves of the sim-
ulations. The myogenic response was only applied
for the cerebral peripherals. The MAP values
where modified by changing the minimun of the
elastance function of the left ventricle in the heart
model that mimics the contraction of the heart.
MAP was calculated as the time-average of the
aortic pressure, CBF is relative to the simulation
computed with the base model.

3.3. Conclusion

The study presented a possible way to model two
cardiovascular system control mechanisms, the myo-
genic and the metabolic response. Although both
work locally, the myogenic response aims to ensure
the constant circumferential shear stress, and to keep
the blood flow constant and protect the vessels from
overpressure. Traditional fluid and solid mechanical
considerations determine a theoretical function for
the pressure - peripheral resistance; however, lower
and upper diameter boundaries limit the deformation
keeping the physiological relevance. The metabolic
response maintain the oxygen saturation level high
ensuring the proper function of tissues and organs.
The applied mathematical model builds on the same
foundations as the myogenic one.

The simulation results suits the physiological
relevance and gives qualitatively correct values. The
myogenic model mimics the autoregulation, i.e., lim-
its the effect of increased mean arterial pressure to
the cerebral blood flow keeping the nutrient supply
high despite changing physiological state. Analysing
the metabolic response, by creating simulation scen-
arios with mimicking exercise by an increased oxy-
gen demand could prove the qualitative relevance of
the model. The results clearly set the direction for
further research: in-vivo measurement can increase
the validity of the models.
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