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ABSTRACT
Low-dimensional hemodynamic simulations of-

fer the advantage of modelling blood flow across
the entire vascular system simultaneously. This
approach enables the representation of large-scale
physiological processes, including the complete
cycle of oxygen transport within the vascular system.

In this cycle, inhaled oxygen diffuses from the
alveoli into the pulmonary capillaries. Oxygen-
ated blood is then transported via the pulmonary
veins to the left heart and subsequently distributed
through the systemic arteries. In the systemic capil-
laries, oxygen diffuses from the blood plasma into
the surrounding tissues. The resulting deoxygen-
ated blood is returned to the right heart through the
systemic veins and is then transported back to the
lungs via the pulmonary arteries. These processes in-
volve advection-driven blood transport between two
diffusion-driven stages: oxygen uptake in the lungs
and oxygen delivery to tissues. The heart sustains
this cycle by providing the necessary energy to main-
tain blood flow.

The primary objective of this study is to simu-
late these processes and replicate a realistic oxygen
transport cycle within the whole modeled vascular
system using the one- and zero-dimensional hemo-
dynamic solver, first_blood. Evaluation of the sim-
ulation results demonstrated that the model success-
fully reproduces realistic dynamics across the entire
vascular system.

Keywords: tissue oxygenation, oxygen uptake,
hemodynamics, one- and zero-dimensional simu-
lations

NOMENCLATURE
A Cross section [m2]
C Oxygen concentration

[
m3

m3

]

D Diffusion coefficient
[

m3

m3

]
Kmax -

[
m3(O2)

m3(plasma)·mmHg·s

]
Mmax Maximum consumption rate of oxygen[

m3(O2)
s·m3(plasma)

]
P Partial pressure [mmHg]
hc Wall thickness of capillary vessels [m]
j Index of the given division point [1]
n Number of division points [1]
t Time [s]
x Axial coordinate [m]
α Oxygen solubility

[
m3

mmHg·m3

]
κ Wall permeability

[
m3(O2)

mmHg·mm·s

]
ϕ Volume fraction [%]
τ Time constant of oxygen dissolution [s]
S
V Vessel surface area to volume

[
1
m

]
CRBC RBC concentration in blood

[
1

m3(plasma)

]
HB Haemoglobin [−]
HBO2 Haemoglobin saturation [%]
RBC Red blood cell [−]

Subscripts and Superscripts
a Alveoli
c Capillary
p Pulmonary
sat Saturation
t Tissue

1. INTRODUCTION
Studying biological processes through mathem-

atical modeling could become a cornerstone in un-
derstanding complex physiological phenomena in the
future. Hemodynamics, the dynamics of blood flow,
is a fundamental aspect of cardiovascular physiology,
directly influencing the delivery of nutrients and oxy-
gen to tissues.

The vascular system has many tasks, one of
which is the transport of O2 (oxygen), which is of
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prime importance. O2 is crucial for the body since
human cells need O2 to produce adenosine triphos-
phate, which can be used or stored as energy. In case
of inadequate blood supply, the body activates cer-
tain autoregulation processes to match the demand.
For realistic haemodynamic simulations, taking these
into account is inevitable.

The simulation of O2 transport is the first step
to simulate certain autoregulation processes, such as
the metabolic response. For that reason, this article
presents a mathematical model for the O2 transport.
The models include tissue O2 uptake at the systemic
capillaries and blood oxygenation at the pulmonary
capillaries. Modelling these two processes ensures
that the whole O2 transport cycle is adequately cap-
tured.

1.1. The vascular system model
Low-dimensional haemodynamic simulations

have the advantage of being computationally less
demanding, making it possible to simulate blood
flow in almost the entire vascular system simultan-
eously. This approach considers each large vessel as
an axisymmetric pipeline, which builds up a vascular
tree. Two equations describing the behavior of the
fluid, the mass and momentum balances, are solved.
The vessels are not rigid, so a material model con-
necting the transmural pressure and vessel deform-
ation is needed [1]. This adds a third independent
equation to the previous two. A detailed description
of the vascular model is presented in [2]. The three
independent equations are solved with the MacCor-
mack scheme and the method of characteristics with
the first_blood solver [3, 4].

1.2. Structure of the paper
The paper is structured as follows: After the

introduction, a model for transport simulation in
lumped models is presented. This is followed by
a description of a modified version of the tissue
oxygenation model from [5]. Before the results
are presented and discussed, the blood oxygenation
model is also introduced.

2. METHODS
2.1. Transport model for lumped models

For the vessels modelled in one dimension, the
transport equation is solved given by Eq. 1, where
C is a general transport variable. The effect of dif-
fusion is small compared to the advection, the min-
imum of the Péclet number is around PeO2

= vcLc
DO2
=

0.001[ m
s ]·0.00315[m]

1.65·10−9[ m2
s ]

≈ 1909[1], where vc is velocity of

the plasma in the capillaries [6], Lc is the length of a
capillary (the value is estimated) and DO2 is the diffu-
sion coefficient [5]. Red blood cells are much larger
than O2 molecules, and the effect of diffusion is even
smaller, so the diffusion along the vessel axis can be
neglected entirely.

The solver calculates the velocity field in every

timestep for all vessels; thus, the concentration val-
ues can also be determined. At the intersections
of the vessels there are nodes, the concentration is
determined by assuming perfect mixing, providing
boundary conditions. The concentration of the nodes
is calculated as the weighted average of concentra-
tions flowing toward the node, and the weights are
the volumetric flow rates.

∂C
∂t
= −v

∂C
∂x

(1)

Besides the vessels modelled in 1D, there are
also lumped models. For example, the peripherals
are modelling small vessels, veins and organs. The
structure of a peripheral model can be seen in Fig-
ure 1. The solver determines the volumetric flow
rate and pressure values for these zero-dimensional
models in each time step. Velocity and a spatial co-
ordinate are necessary to calculate the transport. The
next description briefly describes how these paramet-
ers are estimated for the 0D models.

• The time average of the volumetric flow rate
corresponding to the resistance at the given peri-
pheral model is calculated from a previous sim-
ulation for a cardiac cycle.

• Average velocity values corresponding to each
segment can be found in the literature [6]. Time
and spatial averages are needed in the simu-
lations for arterioles, capillaries, venules, and
veins. Table 1 presents the literature values con-
sidered in this work.

• The flow rate and the velocity determine the
cross-section area for each segment. This way,
in every time step with the previously calculated
volumetric flow rate, a realistic velocity value
can be obtained.

• Finally, the length is estimated for each seg-
ment; see Table 1 for the values. The venous
vessel lengths are assumed to be equal to the
length of the arterial path from the heart to the
considered periphery.

Figure 1. Peripheral models. Each compart-
ment (arterioles, capillaries, venulares and veins)
is modeled with an RLC circuit [7]. The left node
of the lumped model is connected to a 1D vessel
segment.

Providing that all segments at each periphery
have every necessary additional parameter (a cross-
section area and length), the transport of substances
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Table 1. Velocity and length values for each seg-
ment. * indicates that for each peripheral model,
the sum of the venous vessel lengths is uniquely
determined based on the arterial model. The ven-
ous vessel lengths are assumed to be equal to the
length of the arterial path from the heart to the
considered periphery.

v [ m
s ] L [m]

arterioles 0.02 0.0225
capillaries 0.001 0.00315
venules 0.033 0.00515
veins 0.133 *

can be simulated the same way as for the vessels
modelled in one dimension. The described transport
model is general, and an arbitrary number of trans-
port variables can be solved simultaneously.

2.2. Tissue oxygenation
The haemoglobin (HB) in red blood cells

(RBCs) is mainly responsible for oxygen delivery.
An HB molecule can bind a maximum of four O2
molecules reversibly. Hemoglobin saturation (HBsat)
indicates the percentage of bound O2 molecules rel-
ative to the maximum amount possible. If all HB
molecules are bound to four O2 molecules, the sat-
uration is 100%. O2 molecules stay attached to
the HB molecules because of a balance between the
partial pressure of O2, PO2,p, and the HB satura-
tion. This balance can be represented with a sigmoid
curve. The curve is obtained by fitting (with the least
squares method), while the data points are taken from
the relevant interval of PO2,p (40mmHg ≤ PO2,p ≤

95mmHg) from the literature, see Table 2. The func-
tion is given by Eq. 2,

HBO2 =
L

1 + e−k(PO2−m) + b (2)

where L = 1.251[−], k = 0.0676[1/mmHg], m =
17.71[mmHg] and b = −0.274[−], and the curve is
shown by Figure 2. The shape of the curve can be ex-
plained by the fact that the first O2 molecule bound to
an HB molecule changes the O2-affinity, making the
binding of the second and third O2 molecule easier
[8].

Table 2. Corresponding values of PO2 [mmHg]
and HBO2 [1] in normal physiological conditions
in the relevant interval (40mmHg ≤ PO2 ≤

95mmHg

PO2 40 50 60 70 80 95
HBO2 0.75 0.85 0.91 0.94 0.96 0.97

As RBC reaches the capillaries, the partial pres-
sure reduces; thus, the O2 disconnects from the HB
molecules and enters the blood plasma. Between
the plasma and the tissue, the main driving force
is the diffusion because the velocity of plasma is

Figure 2. Sigmoid curve fitted with least squares
method to data points are taken from Table 2.

≈ 0.5 − 1[ mm
s ] [6], leaving enough time for the O2

diffusion from the plasma to tissues through the ca-
pillary walls. Altogether, four transport equations
are solved to model this complicated phenomenon,
one for each: RBC, HBO2 , O2 concentration in the
plasma, and O2 concentration of the tissue. In larger
arteries, arterioles, venules, and veins, O2 absorption
is negligible; thus, Eq. 1 is solved for these parts of
the vascular model. However, handling the O2 diffu-
sion needs special source terms.

Capillaries can be found in the systemic peri-
pherals and also in the pulmonary circulation. First,
we discuss the former. The mathematical model de-
scribing the tissue oxygenation is based on the work
of Bing [5]. The following assumptions are applied
in the case of this model:

• O2 and RBC diffusion is neglected along the
vessel axis.

• The dissolution of O2 from HB to plasma is in-
stantaneous, i.e., Eq. 2 is updated each timestep.

• The inter-segment advection (e.g. arterioles-
venules) term is not considered. This means that
the partial pressure difference of O2 between the
segments does not inflict a change in O2 concen-
tration.

All following differential equations are advec-
tion transport ones with different source terms to
mimic certain biological or chemical effects. The
parameters and their values are in Table 3. The first
is for the O2 concentration in the capillaries, Cc, that
is
∂Cc

∂t
= − v

∂Cc

∂x︸︷︷︸
advection

−
κc
hc

S c

Vc

(Cc

αb
−

Ct

αt

)
︸              ︷︷              ︸

diffusion from plasma to tissue

+

+
1
τ
∆HBO2 ·CRBC · NO2/RBC

M
NA · ρ︸                                     ︷︷                                     ︸

O2 dissolving from HB to plasma

(3)

The diffusion of O2 into tissue is driven by the par-
tial pressure difference of dissolved O2 between the
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Table 3. Parameters of tissue oxygenation model.
Literature provided an interval for each para-
meter, and the applied values fall within that
range [5]. The exceptions are ϕc and S c

Vc
, which

come from synthetic geometries suggesting differ-
ent values: ϕc = 1.42[%] and S c

Vc
= 6.1638 · 105[ 1

m ].
ϕt is then calculated as 1-ϕc.

Notation Unit Value
κc

m3

mmHg·mm·s 4.2 · 10−14

hc m 1.0 · 10−6

S c
Vc

1
m 4.74 · 105

αb
m3

mmHg·m3 3.11 · 10−5

αt
m3

mmHg·m3 3.95 · 10−5

τ s* 8.0 · 10−2

ϕc % 1.1303
ϕt % 98.8697
Mmax

m3

s·m3 2.4 · 10−4

C50
m3

mmHg·m3 109

NO2/RBC
1
1 2.6 · 10−5

M kg
mol 0.032

NA
1

mol 6 · 1023

ρ kg
m3 1.43

plasma and the tissue, expressed as PO2,p − PO2,t =
Cc
αb
−

Ct
αt

. The term κc
hc

S c
Vc

represents the rate of change
in Cc due to a unit difference in partial pressure.
Moreover, the last term models the dissolution of O2
to plasma from O2 bound to hemoglobin (HB) ac-
cording to the following considerations.

• At each timestep there is a given HBO2 and
Cc value. These are not necessarily in perfect
balance, i.e., the sigmoid relationship given by
Eq. 2 is not met. ∆HBO2 gives the difference
between the actual state and the sigmoid curve
with the current Cc.

• The difference dissolves into the plasma de-
scribed by the differential equation of a first-
order lag.

• The dissolved amount is also substracted from
the HBO2 to ensure mass balance.

Eq. (4 describes the O2 concentration of tissues.
The second term, corresponding to the O2 diffusion
from plasma to tissue, is the same as in Eq. (3, but
multiplied with ϕc

ϕt
(the ratio of capillary to tissue

volume) and with a different sign to ensure mass bal-
ance. The multiplication by ϕc

ϕt
is necessary since

the variables in the equations represent concentra-
tion, and the volumes of tissue and blood are differ-
ent.
∂Ct

∂t
=
κc
hc

S c

Vc

ϕc

ϕt

(Cc

αb
−

Ct

αt

)
︸                  ︷︷                  ︸

diffusion from plasma to tissue

−
MmaxCt

Ct +C50︸    ︷︷    ︸
O2 consumption

; (4)

The O2 consumption by tissue activity (see last term
in Eq. 4) is modelled by the Michaelis–Menten kin-
etics, where C50 is Ct at the half maximum consump-
tion rate [5], as this model is applied to describe nu-
trient uptake by cells [9].

The third equation describes the HBO2 saturation
level. The only source term is the dissolution of O2
from HB to plasma, same as in Eq. (3).

∂HBO2

∂t
= − v

∂HBO2

∂x︸    ︷︷    ︸
advection

−
1
τ
∆HBO2︸    ︷︷    ︸

O2 dissolving from HB to plasma

(5)

Finally, the last one tracks the flow of RBC cells. As
the amount of RBC cells remains constant on the low
time scale, no additional source terms exist.

∂CRBC

∂t
= − v

∂CRBC

∂x︸   ︷︷   ︸
advection

(6)

Figure 3. The transport of O2 in capillaries.

2.3. Blood oxygenation
Gas exchange in the pulmonary circulation oc-

curs with the help of alveoli, which are small air sacs
in the lungs that allow gases to enter the blood. The
difference between the partial pressure of O2 in the
alveoli and in the capillaries drives the diffusion of
O2. The partial pressure of O2 in the alveoli is about
PO2,a = 100[mmHg], with minimal fluctuations over
time [8]. The applied mathematical method is a
modification of the systemic capillaries. The main
difference being the direction of O2 diffusion, and,
since the fluctuations of the partial pressure of O2 in
the alveoli is low, it is assumed to be constant, so is
the tissue concentration. Overall, there is no need for
Eq. 4 in the pulmonary circulation, Eq. 5 and Eq. 6
are the same; however, the development in the source
term of the plasma concentration model is crucial to
cope the correct O2 diffusion.

∂Cp,c

∂t
= − v

∂Cp,c

∂x︸ ︷︷ ︸
advection

−Kmaxsin2
( jπ

n

)(Cp,c

αb
− PO2,a

)
︸                              ︷︷                              ︸

diffusion from alveoli to plasma

+

+
1
τ
∆HBO2 ·CRBC · NO2/RBC

M
NA · ρ︸                                     ︷︷                                     ︸

O2 dissolving from HB to plasma

, j ∈ {1; 2...n};

(7)
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The second term on the right hand-side of Eq. 7
describes the diffusion of O2 from the alveoli. Kmax is
a constant parameter representing the maximum con-
centration change caused by a unit partial pressure
difference in one second. The sin2 function models
the gradual change of the vessels rather than a sudden
shift, so there is no O2 diffusion in the start and end
of the pulmonary capillaries.

(Cp,c

αb
− PO2,a

)
is the par-

tial pressure difference driving the diffusion of O2.
Table 4 gives the parameters of Eq. 7.

Table 4. Notations used in Eq. 7 describing the
O2 uptake in the pulmonary capillaries.

Notation Dimension (value)
PO2,a mmHg 100
Kmax

m3

m3·mmHg·s 6.479 · 10−4

3. RESULTS AND DISCUSSION
Figure 4 represents the results of the O2 trans-

port simulation. Even though the simulation is transi-
ent, it converges to a periodic state. Since the fluctu-
ations of the concentration levels within the periodic
state are negligible, the figure contains temporal av-
erages. While the y-axis presents the saturation level
and the plasma O2 concentration for the top- and
bottom-side plot, respectively, the x-axis is a quasi-
spatial coordinate, i.e., the actual lengths are distor-
ted, giving each segment of the circulatory system
the same gap. The HBO2 saturation level (see top-
side) is high for the systemic arteries and the pulmon-
ary veins, while it is low for the systemic veins and
the pulmonary arteries. The simulation results in a
high level of around 97% and a low of 75%, which, as
the dashed lines indicate in the figure, match the lit-
erature data qualitatively. Similar conclusions can be
drawn from the bottom-side figure regarding plasma
O2 concentration. A slight discrepancy is present
for the high-oxygenated level, but the low level co-
incides perfectly. It is interesting to notice the trans-
ition from high to low level in both cases. While the
saturation level drops linearly, the plasma O2 concen-
tration shows exponential tendencies.

Even though the model results in physiologic-
ally relevant values, the validation can be only con-
sidered qualitatively. A significant uncertainty ori-
ginates from the parameters. Since the original para-
meters are from different sources, they are not ne-
cessarily free from contradictions. The cited article
specifically models the human brain, so the paramet-
ers determined are not necessarily valid for all body
parts. The adopted mathematical model used for the
synthetic geometries is given by [10], which focuses
solely on the cerebral microvasculature. Some para-
meters cannot be directly measured, and only estim-
ates can be applied. A patient-specific or even a
population-based model needs further in-vivo meas-
urements and calibration of the model. Finally, the
modelled biology itself might be more complex than

Figure 4. Simulation results of the O2 transport
cycle after the transient. The haemoglobin sat-
uration and plasma O2 concentration values are
physiologically correct at every location in the
vascular system.

the current model.

4. CONCLUSIONS
The paper presents a possible mathematical

method to model oxygen (O2) transport via blood
flow in the circulatory system. To obtain the classic
hydraulic variables (such as pressure or velocity), the
solution of the traditional mass and momentum bal-
ance equations and the deformable walls need to be
coped. The basis for predicting O2 concentration is
the advection-diffusion equation from fluid dynam-
ics. While diffusion along the vessel axis is negli-
gible due to the high Peclet number, diffusion drives
the exchange between the capillaries and tissues in
both systemic and pulmonary capillaries. The former
provides O2 for the tissues (such as organs or muscle)
using the O2 for their primary function; the latter is
responsible for the O2 intake to the bloodstream from
the lungs.

The presented model is validated qualitatively,
i.e., the results coincide with physiological ranges in
general. The O2 saturation level is above 95% after
the O2 intake in the lungs, i.e., the pulmonary veins,
the left side of the heart, and the systemic arteries.
The O2 consumption of the tissues at the systemic ca-
pillaries reduces O2 concentration to 75%. However,
patient-specific or population-based validation is in-
evitable in future work, which requires in-vivo meas-
urements performed on real patients. Furthermore,
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verification and a thorough uncertainty analysis are
necessary to improve the reliability of the model.
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