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ABSTRACT

This study investigates the spherical stability
and breakup limits of oscillating microbubbles in an
acoustic standing wave, employing both a Reduced
Order Model (ROM) and a multiphase flow solver.
The ROM couples the spherical bubble dynamics,
governed by the Keller-Miksis equation, with ax-
isymmetric surface mode oscillations, formulated as
a system of ordinary differential equations. The re-
sults from the ROM are compared against multiphase
CFD simulations performed using the ALPACA flow
solver. While multiphase CFD simulations are com-
putationally more intensive, they offer deeper in-
sights into the dynamics, including the ability to cap-
ture bubble breakup — a phenomenon that lies beyond
the capabilities of the ROM. This study combines the
ROM and the CFD simulations to predict spherical
stability and breakup thresholds across varying bub-
ble sizes, acoustic pressures, and frequencies. Three
regimes are identified: (1) spherically stable bub-
bles, (2) stable surface mode oscillations, and (3)
instability leading to breakup. The key finding is
that the ROM reliably predicts breakup through un-
bounded growth of surface modes, demonstrating
strong agreement with the results obtained from AL-
PACA simulations.

Keywords: bubble dynamics, direct numerical
simulation, multiphase flow, sonochemistry, re-
duced order model

NOMENCLATURE

Ry [um] initial bubble radius

Rg [pm] equilibrium bubble radius

T [K] temperature

a, [-] n™ dimensionless mode am-
plitude

1

n [um] n™ mode amplitude

c [m/s] speed of sound

cy [J/K] heat capacity at const. volume
f [kHz] excitation frequency

8n [m?/s?]  higher order terms

Lnax [-] max. number of refinements
Po [Pa] ambient pressure

Doo [Pa] stiffened gas EoS parameter
Pa [Pa] pressure amplitude

Py [Pa] vapour pressure

t [ms] time

u [m/s] x-directional velocity

v [m/s] y-directional velocity

€ [—] small parameter

Yy [-] stiffened gas EoS parameter
A [m] wavelength

u [Pa - s] dynamic viscosity

w [1/s] angular frequency

Jol [kg/m?] density

o [N/m] coeflicient of surface tension

Subscripts and Superscripts

B bubble

B,0 bubble, initial state
L liquid
1.INTRODUCTION

The study of oscillating microbubbles in acous-
tic fields is a cornerstone of sonochemistry, where
these bubbles play an important role in energy con-
centration that leads to chemical reactions [/1} 2} |3} 4].
When subjected to acoustic excitation, microbubbles
can undergo complex dynamics, including spherical
oscillations, stable surface wave oscillations, bubble
jetting [S}16] and bubble breakup [7, 8]]. Understand-
ing these behaviors is crucial for scaling cavitation-
driven chemical synthesis for industrial scales.
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A central challenge in modeling non-spherical
microbubble oscillations lies in the uncertainty of
both measurements and models. Experimental data
for non-spherical oscillations are limited to a few pa-
rameter combinations [[7, 9} [10], and they also of-
ten suffer from limitations in accuracy. Computa-
tional models must contend with assumptions and ap-
proximations that may not fully capture the complex-
ity. To address these challenges, this study employs
two complementary approaches: the reduced-order
model (ROM) [11}[12} [13] and the high-fidelity AL-
PACA solver [14} [15]. The ROM provides a com-
putationally efficient framework for analyzing radial
bubble dynamics coupled with surface mode oscil-
lations, making it suitable for large-scale parameter
studies [16]. However, its validity is constrained to
scenarios with small perturbations in surface modes
[L7]. In contrast, ALPACA is a compressible mul-
tiphase computational fluid dynamics (CFD) solver
that solves the governing equations of fluid flow di-
rectly. Leveraging the level set method for interface
capturing and a multiresolution meshing algorithm,
ALPACA makes it possible to simulate surface mode
oscillations and bubble breakup [[18].

This study investigates the spherical stability and
breakup limits of oscillating microbubbles by com-
bining the strengths of ROM and ALPACA. A series
of parameter studies is conducted to explore the ef-
fects of bubble size, pressure amplitude, and excita-
tion frequency on bubble dynamics. ALPACA sim-
ulations are used to validate and refine ROM predic-
tions. The second section discusses the ROM and
the ALPACA solver. Then, the simulations are in-
troduced in the third section and the results are dis-
cussed.

2. MODELING ACOUSTICALLY EX-
CITED BUBBLES

2.1. Reduced Order Model

The Reduced Order Model handles the non-
spherical bubble dynamics as a vibration problem
assuming axial symmetry and small deformation.
The aim is to avoid partial differential equations by
employing modal decomposition, specifically using
Legendre polynomials as orthogonal basis functions,
and to construct an ordinary differential equation sys-
tem that describes the time evolution of the mode
amplitudes. In this manner, the temporal evolution
of the complex bubble shape ry, expressed via Leg-
endre polynomials as an infinite series in a spherical
coordinate system that can be described as:

r(0,1) = R() + ), 2a,()Pa(u), (1)
n=2

where R(?) is the spherical or 0" mode as the func-
tion of time, while a, denotes the n™ mode am-
plitude corresponding to the Legendre polynomial
P,(u) of order n, with u = cos(u). Note that
the first mode, i.e., the translational motion, is ne-

2

glected in this paper for simplicity. Additionally, sur-
face distortion is assumed to be small, as indicated
by the small parameter €. Following the work of
Shaw [[L1}12}[13]], the mode amplitudes are described
by an implicit second-order nonlinear n-dimensional
differential equation system derived from the La-
grangian function composed of the kinetic and po-
tential energy. The nonlinear coupling terms permit
interaction between the modes and account for the
implicit nature of the system. The volume mode (the
radial oscillation R(¢)) reads as:

(1 - E)RR' + (1 - i) Spe o G()
3CL

CL 2

1, X
+—(R-GO+R-GO)+& (g0 +80). ()
L

where cy, is the speed of sound in the liquid and

Ro\”  py
G(t) = Psy (_0) iyl
pL \ R PL
1 . 44uR 20
— — (po+ pasin(wn) — 2= - =2 (3)
PL pLR  pLR

In this context, pp, denotes the equilibrium pressure
inside the bubble, while p; represents the density of
the liquid. The initial radius of the bubble is given
by Ry, and vy refers to the ratio of specific heats. The
dynamic viscosity of the liquid is denoted by i, and
o stands for the surface tension. Acoustic excitation
is characterized by the angular frequency w and the
pressure amplitude p4. The ambient pressure, also
known as the far-field pressure, is represented by po,
and p, indicates the vapour pressure. The higher or-
der terms g, and g,, are the inviscid and damping
terms, which can be found in [[11, [12]. The surface
modes have the following form:

P {R'an +3Ra,

+

(= 1)+ 2)# —(n- 1)1'?] ay

+% [(n - D+ 2)%% +(n+2)2n+ 1)‘%]}

= 82 (gn + gnv) . (4)

Like the 0™ mode, the second-order term governs the
coupling between the modes, which can be separated
into inviscid and damping components; the interested
reader can find these terms in [[16]].

The solution strategy for the model is di-
vided into two main parts: an initial value prob-
lem and a nonlinear equation system. The ini-
tial value problem is solved using a self-developed
Runge—Kutta—Cash—Karp solver. At the same time,
the nonlinear equation system is handled using a
GPU-optimized iterative technique derived by the
authors [16]. With this approach, the parameters of
large spherical or closely spherically oscillating bub-
bles can be found efficiently. The deviation from the
spherical shape is characterised by the mode ampli-
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tudes divided by the 0™ mode; from now on, relative
mode amplitude g, = a,/R. The approximated valid-
ity limit of the model, i.e., the maximum of the rel-
ative mode amplitude corresponding to the dominant
mode (mode with the largest amplitude), is between
0.25 and 0.37 [17].

2.2. ALPACA Simulations

The CFD simulation of an oscillating microbub-
ble in an acoustic field requires a compressible mul-
tiphase solver. The computational domain must span
at least one wavelength to simulate a standing wave,
which, in typical cases, is in the order of 10 mm,
based on the speed of sound and excitation fre-
quency. In contrast, bubble sizes in sonochemistry
are typically around 10 pum, resulting in a scale dif-
ference of approximately three orders of magnitude.
This significant disparity necessitates specialized nu-
merical meshes.
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Figure 1. Layout and boundary conditions of the
ALPACA simulations.

The chosen solver, ALPACA, meets these re-
quirements, having been specifically developed to
study compressible and multiphase phenomena [[14].
ALPACA employs the level set method for inter-
face capturing [19] and utilizes high-order, non-
dissipative numerical schemes to accurately capture
shockwaves [[15]]. Its meshing process is highly ef-
ficient, leveraging a multiresolution algorithm [20]
that automatically refines the mesh as needed. The
maximum number of refinements is controlled by the
user defined parameter /,,x < 14, allowing the cell
size to vary by nearly four orders of magnitude.

ALPACA was used to carry out two-dimensional
axisymmetric numerical simulations of bubbles in a
standing wave. The bubble was positioned at the
node of the acoustic standing wave within a rectangu-
lar domain of dimensions A X 1/2, where A represents
the wavelength. The boundary conditions are illus-
trated in Figure [I] Reflective walls were placed on
the south and north boundaries, causing wave reflec-
tions. A zero-gradient boundary condition was ap-
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plied on the east boundary, while the west boundary
served as the axis of symmetry. The standing wave
was introduced through the initial conditions, and the
bubble was subjected to the following pressure:

p(t) = po — pa - sinQaf - 1). &)

The initial conditions in the bubble correspond
to the equilibrium condition, that is

20
pB(x,y) = po + R (6)
0

where pp is the bubble pressure, o is the surface ten-
sion and Rj corresponds to the equilibrium radius.
The initial velocities are zero and the density is set
according to the ideal gas law:

ug(x,y) =0, (7N

ve(x,y) =0 and 3
PB(X,}’)

b = —7 9

PB(X,Y) 5= DevTs ©))

where up is the x-directional velocity, vg is the y-
directional velocity and pp is the density in the bub-
ble. In both phases, the stiffened gas equation of state
is used [21]]:

p = (- Dpe - pe, (10)

where e is the internal energy and vy, p., are parame-
ters. In the gas phase p g = 0, thus the stiffened gas
EoS results in the ideal gas law, in which yz = 1.4
is the ratio of specific heats. To model the water, pa-
rameters y;, = 4.4 and pe; = 6 - 108 Pa are adopted
from the literature [22].

To accelerate the formation of surface mode os-
cillations, the bubble shape is initially perturbed with
relative mode amplitudes of a, = 0.031, a3 =
—-0.050, a4 = 0.008, and as = 0.016. These am-
plitudes are chosen to ensure that the volume of the
bubble remains unchanged. A post-processing code
was developed in Paraview to extract the mode am-
plitudes from the numerical simulations.

In total, 62 ALPACA simulations were con-
ducted, with each simulation running for 24 hours on
the SUPERMUC-NG supercomputer, utilizing one
compute node with 36 cores. In most cases, this com-
puting time was sufficient to run the simulations for
at least 10 acoustic cycles, enabling the analysis of
long-term behavior. For lower frequencies, simulat-
ing the same number of acoustic cycles requires more
time, as the period of the oscillation is longer, and
more time steps are necessary. Simulating smaller
bubbles necessitates a reduction in cell size, and in
accordance with the CFL condition, the time step
size is also reduced. To account for these factors,
the simulations were extended for an additional 24
hours compute time in the case of low frequencies
and small bubbles.

3. SIMULATION RESULTS

This section presents the results of the ALPACA
and ROM simulations. First, the convergence of the
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ALPACA simulations is analyzed by increasing the
mesh resolution and comparing the results to ROM
predictions. Next, the frequency and bubble radius
are fixed to investigate the effect of pressure ampli-
tude, and the classification of surface modes are dis-
cussed. Finally, large-scale parameter studies are in-
troduced.
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Figure 2. Results of the convergence study with
parameters Ry = 10.5um, py = 50kPa and f =
480 kHz.

3.1. Mesh independence study of ALPACA

A bubble with an initial radius of Ry = 10.5 um
is excited by a standing wave with an amplitude of
pa = 50kPa and a frequency of f = 480kHz. Ac-
cording to the ROM, a stable 3" mode oscillation
is expected to form. Simulations were conducted in
ALPACA using four different mesh resolutions. The
number of adaptive refinements was varied from 8
to 11 on an initial 80 x 144 mesh. This resulted in
the number of cells along the bubble diameter being

4

Noubble = 76, 152,304, and 608 for the resolutions /g,
ly, l1p, and I}, respectively. Figure |Zh demonstrates
that the /g mesh already produces accurate results in
the bubble radius, as further increase of the resolu-
tion does not lead to significant changes. Figures2b
and illustrate the 3" and 4™ modes, respectively.
In the figures, clear convergence is visible. Us-
ing the [y mesh, the desired 3 mode oscillation
forms with an amplitude of a3 ~ 0.3 um, while the
4™ mode dampens to a4 ~ 0.05 um. For comparison,
the ROM predicts a3 = 0.297 um and a4 = 0.023 um.
Based on these results, a mesh resolution of Nyypple ~
300 is used for all subsequent ALPACA simulations.

3.2. Effect of pressure amplitude

The effect of increasing pressure amplitude is ex-
amined for a bubble with an initial radius of Ry =
47.5um excited by a frequency of f = 30kHz
acoustic standing wave at various pressure ampli-
tudes in ALPACA. According to the ROM, the bub-
ble remains spherical when the pressure amplitude
P4 is below 19 kPa. For pressure amplitudes exceed-
ing 39 kPa, unstable surface mode oscillations occur
(a, — o0), potentially leading to bubble breakup. In
the intermediate range, 19 kPa < p4 < 39 kPa, stable
2" and 3™ mode oscillations develop. The radius—
time curves in Figure [3| depict the radial dynamics in
selected ALPACA simulations, showing remarkable
agreement between the ALPACA simulations (red
line) and the ROM predictions (black dashed line).
The mode amplitude—time curves are presented for
the same ALPACA simulation in Figure ] The for-
mation of stable surface mode oscillations takes hun-
dreds of acoustic periods in the ROM; thus, it cannot
be compared directly with ALPACA. The following
observations can be made:

1. For a low pressure amplitude (p4 = 10kPa) the
initial perturbation in the modes damps down as
illustrated in Figure [@p. The bubble is consid-
ered spherically stable in that case. This point
falls below the spherical stability limit, aligning
with the ROM results.

2. For pressure amplitudes p4 = 32kPa and py =
36 kPa, there is an initial large 3 mode oscil-
lation observed during the first few acoustic cy-
cles as depicted in Fig. @b. However, this damp-
ens down and a stable 2" mode oscillation re-
mains. The ROM predicts a dominant 2™ mode
for py = 32kPa, and a dominant 3" mode for
pa = 36KkPa that differs from ALPACA results
as depicted in Fig. fk.

3. For a high pressure amplitude (p4 = 42kPa),
the initial perturbation grows, leading to bubble
breakup at 0.072 ms. This breakup event is in-
dicated by a vertical dashed line in Figs.[3{d and
[@d. For this particular parameter combination
the ROM predicts diverging mode amplitudes

(ap — o).
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The results indicate that the ALPACA simula-
tions and the ROM predict similar spherical stabil-
ity and breakup limits. Based on the simulations,
the spherical stability limit in ALPACA is between
10kPa < ps < 25kPa, compared to py = 19kPa
in the ROM. Similarly, the breakup limit in AL-
PACA lies between 36kPa < ps < 42kPa, while
the ROM predicts diverging mode amplitudes above
pa = 39 kPa. That indicates that diverging mode am-
plitudes in ROM can be a sign of bubble breakup.
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Figure 5. Parameter studies at various frequen-
cies, the background is colored based on the ROM
results, the dots show the ALPACA results. The
gray line indicates the limit of stability (in ROM).
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3.3. Parameter studies

Three parameter studies were conducted using
the ROM. In each parameter study, the frequency was
held constant while the bubble radius and pressure
amplitude were adjusted in the ranges specified in
Table[T} The dominant mode (i.e., the mode with the
largest amplitude) was identified in each case. If the
dominant mode amplitude does not reach a, = 0.001,
then the bubble is considered spherically stable.

Table 1. Parameters used in the studies

30kHz/130kHz/480 kHz
Opum...80pum
OkPa...150kPa

Frequency f
Equiv. radius  Rg
Pressure ampl.  py

The dominant modes are plotted in the (R, ps)
plane for the f = 30 kHz, 130 kHz and 480 kHz cases
in Figures [5a] [5b] and [5¢] respectively. The various
colors correspond to the different modes, as indi-
cated in the legend. The gray line shows the limit
of spherical stability, below which the bubble is con-
sidered spherical according to the ROM. Above the
spherical stability line, where there is no color in the
plot the bubble undergoes breakup. ALPACA sim-
ulations were carried out for selected cases, marked
by dots based on the dominant mode amplitude. Be-
low the spherical stability limit, as determined by the
ROM (gray line), the bubbles in ALPACA also ex-
hibit spherical stability. Slightly above the stability
limit, the surface mode oscillations remain small and
cannot be seen in the ALPACA simulations. For in-
stance, in Fig. [5a]in point marked by 1, the modes
amplitudes are so small that they cannot be resolved
by ALPACA with the given mesh resolution.

The stable surface mode oscillations generally
show good agreement between the ROM and the AL-
PACA simulations. However, there are some cases
where discrepancies occur, particularly for higher
surface modes, as exemplified in Fig. [5b]in point 2,
and Fig. [5c|in point 3. Additionally, cases with high
surface mode amplitudes above the validity limit of
ROM can also exhibit differences, such as @, > 0.3 in
Fig.[5b]in point 4. It is important to note that bubble
breakup consistently occurs above the region of sta-
ble surface oscillations. However, there are instances
where the bubble does not break up, although pre-
dicted by the ROM (e.g., Fig. 5| point 5). This can
be attributed to the validity limit, as it assumes small
perturbations in the surface and may not accurately
capture the behavior in cases with significant surface
perturbations.

Out of the 62 ALPACA simulations, 54 of them
(87%), qualitatively align with the ROM predictions.
The simulation results are summarized in Tables 2] 3]
and[in the Appendix. Based on these observations,
it can be concluded that the spherical stability limit
and the stable surface mode oscillations are accu-
rately predicted by the reduced order model, as long
as the validity limit of the ROM is not exceeded. The
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approximated validity limit of the model is between
0.25 < a, < 0.37 [17]. Furthermore, the ALPACA
simulations verify that diverging mode amplitudes in
ROM can indicate bubble breakup in some cases.

4. CONCLUSION

This study presents a comprehensive compari-
son of the ALPACA and ROM models for predict-
ing surface oscillations and bubble breakup in oscil-
lating microbubbles. The results demonstrate a high
level of agreement between the two approaches, with
ALPACA and ROM predictions aligning in 87% of
cases. The ALPACA simulations achieved accurate
results using a bubble resolution of Nyyphe ~ 300.
Deviations between the models were observed pri-
marily in scenarios where the surface mode oscilla-
tions were small, and could not be resolved in AL-
PACA with the applied resolution, or when the di-
mensionless mode amplitudes exceeded the validity
limit of the ROM.

In conclusion, the two models predict similar
spherical stability and breakup limits, highlighting
their reliability for simulating bubble dynamics. The
results demonstrate that diverging mode amplitudes
in ROM can effectively indicate bubble breakup,
even when these amplitudes exceed its validity limit.
This finding means that ROM could be a computa-
tionally effective method to identify bubble breakup,
although flow simulations with ALPACA provide
more details for capturing high-amplitude surface
mode oscillations and bubble breakup. Together,
these models offer complementary insights into the
stability and breakup phenomena of oscillating mi-
crobubbles.

ACKNOWLEDGEMENTS

This research was supported by the EKOP, Hun-
gary funded by the National Research Development
and Innovation Fund under grant number EKOP-24-
3-BME-84. The authors gratefully acknowledge the
Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for funding this project by providing com-
puting time on the GCS Supercomputer SuperMUC-
NG at Leibniz Supercomputing Centre (www.lrz.de).
Project no. TKP-6-6/PALY-2021 has been imple-
mented with the support provided by the Ministry
of Culture and Innovation of Hungary from the Na-
tional Research, Development and Innovation Fund,
financed under the TKP2021-NVA funding scheme.
The authors acknowledge the financial support of the
Hungarian National Research Development and In-
novation Office via NKFIH grants OTKA FK 142376
and OTKA PD142254.

APPENDIX A

Tables 2} B] and [ contain all the ALPACA sim-
ulation parameters and the identified dominant mode
in ALPACA and the ROM.

7

Table 2. Comparison at f = 30 kHz

Dominant mode

Dominant mode

Rjum — pa/kPa ALPACA ROM
47.5 10 none none
47.5 25 2 2
47.5 32 2 2
47.5 36 2 3
47.5 42 breakup breakup
47.5 60 breakup breakup

75 25 3 3
75 25 breakup breakup
57.5 10 none none
57.5 16 none 4
57.5 21 4 4
57.5 23.5 4 4
57.5 30 breakup breakup
23 62 3 3
23 75 breakup breakup
30 10 none none
30 10 none none
30 10 none none
30 10 4 breakup
30 10 breakup breakup
30 10 breakup breakup
Table 3. Comparison at f = 130kHz
R/um  py/kPa ALPACA ROM
17.5 15 none none
17.5 25 none none
17.5 40 2 2
17.5 55 2 3
17.5 60 2 3
17.5 70 breakup breakup
27 5 3 3
27 10 breakup breakup
27 15 breakup breakup
45 26 none none
20 30 2 2
29 12.5 3 3
35 18.5 4 4
42.5 25 none 5
42.5 30 5 5
45 33 5 5
10 60 none none
60 30 none none
Table 4. Comparison at f = 480 kHz
R/um  p4/kPa ALPACA ROM
17.5 80 none none
17.5 94 5 5
17.5 98 5 5
17.5 120 5 5
17.5 140 5 5
18.6 120 none 5
20 120 none none
22 120 none none
10.5 50 3 3
10.5 80 3 break
7.5 15 2 2
12.6 60 none none
13.4 60 4 break
14.1 60 4 2
15 60 none none
3 140 none none
3 140 4 4
30 10 none none
30 20 none none
30 40 none none
30 70 none none
30 100 none none
30 150 none none
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