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ABSTRACT  
We measured motion of rising bubble under 

pressure-oscillating field, and reported a significant 
enhancement of the rising velocity up to 
approximately 400 times for a shear-thinning fluid 
with 1–5 mm3 bubbles in 0.8 wt% aqueous sodium 
polyacrylate (SPA) (Iwata et al. JNNFM, 2008). 
Complex local flow is observed as uniaxial extension 
occurred at the tail of the bubble during the 
contraction phase as well as the biaxial extensional 
deformation occurred at the upper side of the bubble 
(Iwata et al., JNNFM, 2019). To analyze the flow 
near the bubble, Ito et al. analyzed the motion of an 
expanding/contracting rising bubble in the Carreau-
Yasuda model fluid by FEM analysis (Reoroji 
Gakkaishi, 2020). However, the FEM analysis didn’t 
take into account the effect of viscoelasticity of 
surrounding fluid.  

Therefore, we applied the boundary element 
method (BEM) to the problem of an 
expanding/contracting bubble and modelled the fluid 
external to the bubble as a viscoelastic fluid. The 
bubble is initially located near a rigid wall. In this 
study, the Giesekus model is used as a viscoelastic 
model. We aim to clarify the influence of the rigid 
wall on the deformation and dynamics of an 
expanding/contracting bubble. 

Keywords: Deformation, Boundary Element 
Method, Viscoelastic fluid, Rigid wall, Giesekus 
model 

NOMENCLATURE 
h  [-] non-dimensional position of 
  bubble center 
P b [Pa] pressure of bubble 
P 0 [Pa] initial bubble pressure 
P ref [Pa] pressure of viscoelastic fluid 
𝛾̇  [s-1]  shear rate 
h  [Pa∙s] shear viscosity 
h 0 [Pa∙s] zero-shear viscosity 
h p [Pa∙s] viscosity of polymer solutions 
h s [Pa∙s] solvent viscosity  
h e [Pa∙s] extensional viscosity 
𝜀̇ [s-1] elongation velocity 
N1 [Pa] first normal stress difference 
𝜆! [s] relaxation time 
𝜆" [s] delay time 
𝜇 [Pa s] viscosity of viscoelastic fluid 
𝜌 [kg/m3] density of viscoelastic fluid 
𝛾 [J/(kg K)] specific heat 
𝜔 [rad/s] angular frequency 
G’ [Pa] storage modulus 
G” [Pa] loss modulus 
T [Pa] extra stress 
n [-] subscript indicating the normal 

direction 
𝑇##$  [Pa] the normal-normal component of 

 stress T in the polymeric part  
𝜎 [N/m] surface tension 
C [m-1] curvature 
∇ [m-1] gradient operator 
V  [m3] bubble volume 
V0  [m3] initial bubble volume 
R0 [m] initial bubble radius 
Rm [m] maximum bubble radius 

⋅

⋅
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r [m] r-coordinate 
z [m] z-coordinate 
t [s] time 

 [-] position vector 
 [-]  irrotational velocity vector 
 [s-1] rate of strain of tensor 

𝛼 [-] Giesekus model parameter 
Re [-] Reynolds number 
De [-] Deborah number 
We [-] Weber number 
Nb [-] number of nodes on the bubble  
k [-] nodal number 

 [-] dimensionless velocity potential 
r* [-] dimensionless r-coordinate 
z* [-] dimensionless z-coordinate 
t* [-] dimensionless time 
E [-] ratio of the solvent viscosity to the 
  zero-shear viscosity 
 

1. INTRODUCTION 
A tiny air bubble in viscoelastic fluid moves 

upward at a very slow rising velocity due to the fluid 
viscosity. Thus, the bubble may take a very long time 
to travel through the fluid. To address this issue, 
Iwata et al. proposed the Pressure-Oscillation 
Deforming (POD) method. 

This method involves applying pressure 
oscillations from the vessel to the fluid containing 
bubbles, which gives rise to alternating expansion 
and contraction of the bubbles. The cyclical change 
in bubble diameter due to pressure oscillations 
generates strong, continuous local flows and shear 
near the bubble, giving rise to lower local viscosity 
in the case of shear-thinning fluids. This viscosity 
reduction significantly accelerates the bubble rise 
velocity up to more than 400 times in the case of 1–
5 mm³ bubbles in a 0.8 wt% aqueous sodium 
polyacrylate (SPA) solution (zero-shear viscosity h0 

= 90 Pa s) [1]. The experimental snapshots indicate 
that the bubble forms a spherical shape during the 
expansion phase and develops a cusped shape at the 
tail of the bubble during the contraction phase. 

To further investigate bubble dynamics, Ito et 
al.[2] performed numerical analysis of the flow 
around a bubble using the unsteady finite element 
method. The fluid properties of Carreau-Yasuda 
model were fitted with experimental data with steady 
shear measurements of a 0.8 wt% SPA solution by a 
stress-controlled rheometer. The results showed that 
in a purely viscous fluid subjected to 1 Hz 
oscillations from below, the local shear rate 
increased at the bottom of the bubble during the 
contraction phase and at the top during the expansion 
phase. However, under these conditions, it was 
difficult to observe a cusped bubble, as the elastic 
effects were not considered in this analysis. 

Therefore, the boundary element method 
(BEM) was considered to quantitatively evaluate the 

behavior of a bubble in viscoelastic fluids. Lind and 
Phillips [3] performed BEM analysis of an oscillating 
bubble near a rigid wall in an infinite space filled 
with an upper convected Maxwell fluid. In the 
present study, instead of employing the Maxwell 
model, we introduced the Giesekus model, which 
exhibits shear-thinning behavior and increases has a 
first normal stress difference that increases 
moderately with increasing shear rate. Additionally, 
to ensure a realistic representation of the system, we 
fitted the model’s rheological properties to match 
those of the high-viscosity experimental fluid with 
zero-shear viscosity h0 of approximately 90 Pa·s. 
The numerical modelling in the following sections 
focuses on the effects of viscoelastic properties on 
bubble shape, stress distribution, surface tension, and 
jet velocity dynamics. 
 

2. NUMERICAL ANALYSIS 

2.1. Governing Equations 
The continuity equation, the momentum 

equation are expressed by equations (1) to (2), given 
the following assumptions. The internal energy 
equation is ignored since there is no heat or mass 
transfer through the boundary, and temperature is 
assumed to be constant. Since the fluid is assumed to 
be incompressible, the fluid density remains constant, 
and the continuity equation reduces to a velocity 
constraint. Under this condition, equation (3) is 
derived. The assumption of irrotationality results in 
the curl of the velocity vanishing, thus implying the 
existence of a velocity potential, and the velocity field 
can be expressed as shown in equation (4). 
Substituting this into equation (4), it can be seen that 
this potential satisfies Laplace’s equation in the fluid 
domain. In addition, based on arguments due to 
Joseph and coworkers (see for example, Joseph and 
Liao[4]), it is assumed that the viscoelastic effects are 
only introduced through the boundary conditions, and 
that the viscosity/rheological effects in the fluid bulk 
are negligible in this case. 

The calculations were performed in a two 
dimensional cylindrical coordinate system. The initial 
bubble shape was assumed to be spherical and the 
bubble center was placed at a distance h, the standoff 
distance, from the rigid wall. The continuity 
equations (5), equations of motion (6) and 
constitutive equations (7) at the bubble surface of the 
Giesekus model are shown below. The pressure pb in 
the bubble is obtained from equation (8). Since the 
flow inside the fluid is assumed to be potential, the 
momentum equation can be expressed using the 
potential , and equation (6) is obtained by 
reformulating the Navier–Stokes equation using the 
velocity potential and including the free-surface 
stress balance in normal direction at the bubble 
surface. In addition, equation (7) is the constitutive 
equation of the Giesekus model, which includes a 
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nonlinear term to represent shear-thinning behavior. 
 

 (1) 

 (2) 

 (3) 

 (4) 

                       (5) 

 (6) 

  (7) 

 (8) 

 
Fig. 1 Schematic diagram of initial conditions 
when a rigid wall is set up near a bubble.  
 

2.2. Model Set-up 
The numerical modelling was performed in a 

flow field filled with viscoelastic fluid surrounding a 
single bubble near a rigid wall. As shown in Fig. 1, 
the center of the bubble is initially positioned at a 
distance h from the rigid wall located at z*=0, and a 
two-dimensional axisymmetric flow was assumed 
with the z-axis in the vertical direction. 
 
 
2.3.  Numerical methods 
       The bubble surface was discretized into Nb (Nb = 
40) segments by distributing Nb+1 nodes on the 
bubble from the north to south poles of the bubble. 
Then, the quintic spline representations of the nodal 
positions (r, z) and potential  were integrated over 
each interval on the bubble interface using the 
Gaussian quadrature. The normal stress τnn is 

obtained by solving the constitutive equation, and 
finally, the coordinates (r,z) and the potential  are 
updated by the fourth-order Runge-Kutta method, 
respectively. 

2.4. Material 
        The properties of 5 wt% CMC aq. measured by 
a stress-controlled rheometer (MCR302-WESP, 
Anton Paar, Ltd.) were assumed. Ansys Polymat was 
used to fit the solution properties to the Giesekus 
model. The solution density ρ[kg/m3], initial 
viscosity η0, relaxation time λ1[s], and ratio of the 
fluid viscosity to the zero-shear viscosity E [-] were 
determined. A typical value of 1000 kg/cm3 was used 
for the density of water. As for the viscoelastic 5wt% 
CMC solution, the density is ρ = 1049.54 kg/m3. 
Zero-shear viscosity η0 is 90.49 Pa s. 

The viscosity ratio E = %!
%"

 is obtained as E = 
1.105× 10&'. 
Additionally, two values of the relaxation time 𝜆! 
were considered: 𝜆! =0.02 s and 	𝜆! =10 s. 
Furthermore, the specific heat ratio γ was set to 1.25, 
following Walter et al.[5].  
 

 

 
Fig. 2 Profiles of rheological properties of 5 wt% 
CMCaq. and fitting curves of Giesekus model  
(α = 0.3) 
 

3. RESULTS AND DISCUSSION 
We investigated the expansion and contraction 

phases of a bubble placed near a rigid wall using the 
Giesekus model (α = 0.3). We analyzed the influence 
of the initial standoff distance on bubble shape and 
examined the temporal variations in jet velocity. 
Furthermore, we conducted a detailed study on the 
effects of shear stress fields and polymeric stress. In 
this calculation, the coordinates r and z, as well as 
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time t, were non-dimensionalized using equations (9) 
~ (11) as follows. The dimentionless numbers are 
defined as shown in equations (12) thorough (14). 
Here, Rm represents the maximum bubble radius 
attained by a bubble in an infinite expanse of inviscid 
fluid. 

 (9) 

 (10) 

 (11) 

 (12) 

 (13) 

 (14) 

 

3.1. Effect of initial standoff distance 
The results corresponding to a relaxation time 

𝜆!= 0.02 s are presented below. As for h = 2.0, the 
fluid flow acted in the upward direction and 
obliquely downward, contributing to the formation 
of an interesting shape during the contraction phase 
as shown in Fig. 3 – (c) to (f). Local concentration of 
stress on the lateral sides of the bubble resulted from 
these oblique jet flows, leading to complex 
deformation. The maximum of 𝑇##  at head of the 
bubble reached approximately 0.1, highlighting the 
strong nonlinear effects. This behavior is attributed 
to the weakened influence of the wall, allowing the 
fluid to deform more freely.  

When the bubble was initially positioned closer 
to the wall (h = 1.0), a vertically downwards jet flow 
acted from upward, causing the upper side of the 
bubble to fold inward during the contraction phase. 
Strong stress distribution was observed at the upper 
part of the bubble as shown in Fig. 4. In particular, 
negative stress (negative value defined to be in the 
outward direction from the bubble surface) 
concentrated locally in the upper deformation region, 
indicating a pronounced effect of shear stress. The 
depressed shape at the bubble top was caused by 
strong elastic effects and closer proximity to the wall.  

In the case of h = 4.0, a horizontal jet flows from 
the sides contributing to the extension in the vertical 
direction, with local extra stress up to 0.3 at the 
center during the contraction phase as shown in Fig. 
5. As a result, the delayed relaxation of polymer 
stress caused bubble elongation, leading to a bubble 
shape at the onset of fragmentation. In this case, the 
wall’s influence was smaller, forming a uniform 
stress field except for necking area. 

(a) t* = 0 (Initial bubble) 

 
(b) t*=0.5530 (Expansion phase) 

 
(c) t*=2.184 (Contraction phase) 

 
(d) t*=2.648 (Expansion phase) 
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(e) t*=3.143 (Contraction phase) 

 
(f) t*=3.219 (Most contraction phase)  

 
Fig. 3 Profiles of bubble shape and stress 
distribution in the Giesekus model at h=2.0. 
(h 0 = 90.49 Pa∙s, 𝝀𝟏= 0.02 s, σ= 0 mN/m,	𝜸=1.25,	
α = 0.3,  Re = 0.1137, De = 195.2, We-1 = 0)  
 
 

Final shape(t*=1.100, Contraction phase) 

 
Fig. 4 Profiles of bubble shape and stress 
distribution in the Giesekus model at h=1.0. 
(h 0 = 90.49 Pa∙s, 𝝀𝟏= 0.02 s, σ= 0 mN/m,	𝜸=1.25,	
α = 0.3,  Re = 0.1137, De = 195.2, We-1 = 0)  

Final shape (t*=5.191, Contraction phase) 

 
Fig. 5 Profiles of bubble shape and stress 
distribution in the Giesekus model at h=4.0. 
  (h0 = 90.49 Pa∙s, 𝝀𝟏= 0.02 s, σ= 52.5 mN/m,	𝜸=1.25,	
α = 0.3,  Re = 0.1137, De = 195.2, We-1 = 0) 
 
 
 

3.2. Effect of Surface tension 
To help understand the factors which lead to the 

formation of the various bubble shapes, we examined 
the effect of surface tension at the bubble surface. 
The calculations were performed by varying the 
reciprocal of the Weber number We-1, while keeping 
the reference pressure of the viscoelastic fluid Pref 
and the maximum bubble radius Rm constant. When 
the surface tension is set to zero, i.e., We-1 = 0, the 
results are shown in Fig. 3. In contrast, the result for 
a surface tension σ = 52.5 mN/m, corresponding to a 
1 wt% CMC aqueous solution at 25 °C, is presented 
in Fig. 9. In this case, it is observed that the bubble 
expands and contracts alternately while maintaining 
its spherical shape. The stress is observed to be 
uniformly distributed across the entire bubble 
interface, with no significant local concentration of 
stress. This is likely occurred because the surface 
tension helps to maintain the smooth and 
symmetrical bubble shape. Additionally, the results 
for near-zero surface tension conditions specifically 
σ = 0.0725 mN/m and σ = 0.725 mN/m are shown in 
Figs. 10 and 11, respectively. Other unique bubble 
shapes and significant deformation were observed in 
both cases. A similar final bubble shape to the zero 
surface tension case was observed at We-1 = 7.18×10-

4 as shown in Fig.10. The pinch off points can be 
observed to take place in lateral regions around the 
bubble, as shown in Fig.11. 
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(a) Initial bubble (t*= 0) 

 
(b) Expansion phase (t*= 24.34) 

 
(c) Final shape (t*= 84.66, Contraction phase) 

 
Fig. 9 Profiles of bubble shape and stress 
distribution in the Giesekus model at h=1.0. 
 (h0 = 90.49 Pa ∙s, 𝝀𝟏= 0.02 s, σ = 52.5 mN/m,	
𝜸=1.25,	α = 0.3,  Re = 0.1137, De = 195.2, We-1 = 
0.5198) 
 

Final shape (t*=3.194, Contraction phase) 

 
Fig. 10 Profiles of bubble shape and stress 
distribution in the Giesekus model at h=1.0. 
 (h0 = 90.49 Pa∙s, 𝝀𝟏=0.02 s, σ= 0.0725 mN/m,	
𝜸=1.25,	α = 0.3,  Re = 0.1137, De = 195.2, We-1 = 
0.000718) 
 
 

Final shape (t*=3.186, Contraction phase) 

 
 
Fig. 11 Profiles of bubble shape and stress 
distribution in the Giesekus model at h=1.0. 
 (h0 = 90.49 Pa∙s, 𝝀𝟏= 0.02 s, σ = 0.725 mN/m,	
𝜸=1.25,	α = 0.3,  Re = 0.1137, De = 195.2, We-1 = 
0.00718) 
 

3.3. Investigation based on Shear rate 
For a relaxation time 𝜆!  = 0.02 s and zero-

shear viscosity h0 = 90.49 Pa s, the shear rate 𝛾̇ was 
calculated using the rate of deformation tensor S, 
defined by following equation (15). Additionally, the 
shear rate  𝛾̇  was calculated at the points on the 
bubble interface where the strongest stress acts 
during the contraction phase as shown in Table 1. 

 

 (15) 
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 (16) 

 
In the case of Fig.4 (h = 1.0), strong local 

stress occurred at the upper bubble surface, where the 
local shear rate at node number k=1 was observed to 
be up to 687 s-1 during the contraction phase. 
However, a weaker local stress was observed in 
lower regions with lower local shear rates around 
100 s-1. 

As for the case of Fig.3 (h = 2.0), the 
maximum shear rate was observed at k = 1 during the 
expansion phase, with a local shear rate of 4.281 s-1. 
The bubble exhibited an interesting shape during the 
contraction phase, with the strongest stress acting at 
the bubble’s center. The local shear rate at this point 
was up to 2960 s-1 in the final contraction phase as 
shown in Fig.3-(f). It can be seen that the bubble is 
ready to pinch off into three parts. 

In the case of Fig.5 (h = 4.0), the bubble 
deformed into a vertically contracted shape during 
the contraction phase, with the strongest stress 
occurring at k = 21. The local shear rate at this point 
was 199 s-1. 

Table 2 shows the local shear rates under the 
condition of h = 2.0 as a function of surface tension. 
Shear rates are extremely higher for all cases during 
the contraction phase. In the zero‐tension case (σ = 0 
mN/m), the peak shear rate reaches 2936 s⁻¹ at 
t*=3.218. Introducing a low surface tension of σ = 
0.0725 mN/m reduces this peak by approximately 
80% to 522 s⁻¹ at the same phase. For σ = 0.725 
mN/m, the peak is about 1536 s⁻¹, and the peak is 
suppressed to just 195s⁻¹ at σ = 52.5 mN/m. 

 
 
Table 1 Details of the local shear rate in the 
Giesekus model. (h0 = 90.49 Pa ∙ s, 𝝀𝟏 = 0.02 s,	
𝜸=1.25,	α = 0.3) 

 
 
Table 2 Details of local shear rate in the Giesekus 
model due to differences in surface tension at the 
bubble surface. (h0 = 90.49 Pa ∙ s, 𝝀𝟏 = 0.02 s,	
𝜸=1.25,	α = 0.3) 

 
 

CONCLUSIONS 
We performed a numerical simulation to analyze 

the expansion and contraction behavior of a bubble 
placed near a rigid wall in a viscoelastic fluid using 
the Giesekus model (α = 0.3).  

It was found that the deformation of the bubble 
varied significantly depending on the initial distance 
between the bubble and the rigid wall. This is due to 
the combined influence of the restricted fluid 
movement near the wall and the rheological 
properties of the viscoelastic fluid, which together 
influence the deformation of the bubble. Moreover, 
the results indicate that surface tension significantly 
affects the morphology of the bubble.  
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