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ABSTRACT 

Hospices house vulnerable patients with severely 

weakened immune systems, making control of 

airborne virus transmission critical. This study 

introduces a Probability of Infection (POI) metric, 

quantified through Computational Fluid Dynamics 

(CFD) using a transient Eulerian-Lagrangian (E-L) 

model to simulate airborne particle transport and 

exposure. Simulations include exhaled CO₂ and 

infectious aerosols to explore spatial correlations, 

revealing that while CO₂ and POI distributions 

exhibit similarities, they diverge due to differences 

in diffusion behaviour. Across 13 scenarios, POI 

heatmaps identify high-risk zones influenced by 

airflow patterns and infector position, not solely by 

CO₂ levels. The findings highlight the limitations of 

relying on CO₂ concentration as a proxy for infection 

risk and demonstrate the value of direct aerosol 

modelling in assessing ventilation effectiveness. 

This approach offers a robust basis for improving 

infection risk evaluation in sensitive indoor 

healthcare environments. 

Keywords: Finite Volume Method, Indoor Air 

Quality, Indoor Virus Transmission, CFD, Fluid 

Dynamics 

Nomenclature  

Cd       Drag coefficient  

P          Pressure [pa] 

Pr        Prandtl number 

Red       Reynolds number of particle 

T Mean temperature [K] 

Ui          Mean velocity component in Cartesian  

Greek Symbols 

μ Dynamic viscosity [Pa s] 

ρ Density [kg/m3] 

Acronyms 

E-L        Eulerian-Lagrangian model 

IR           Infection risk 

POI         Probability of infection (%) 

       

Additional symbols and acronyms are defined in 

the text. 

1. INTRODUCTION 

The risk of infectious particle transport via 

ventilation systems has gained significant attention, 

particularly during the COVID-19 pandemic [1–4]. 

Virus transmission is especially efficient in enclosed, 

crowded indoor environments such as offices, 

restaurants, and public transport [5]. Ventilation 

plays a crucial role in mitigating airborne 

transmission by removing indoor pollutants and 

replacing contaminated air. Consequently, 

organisations such as the Chartered Institution of 

Building Services Engineers (CIBSE), the American 

Society of Heating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) and the 

Federation of European Heating, Ventilation and Air 

Conditioning Associations (REHVA) have issued 

guidelines advocating increased outdoor air 

exchange to reduce airborne pathogen exposure [6–

8]. However, the optimal ventilation rate required to 

mitigate airborne contagion remains unclear [9]. 

Moreover, a trade-off exists: while ventilation dilutes 

contaminants, it may also contribute to aerosol 

dispersion, potentially increasing infection risk [10]. 

This study seeks to establish an optimal balance by 

refining ventilation strategies for infection risk 

mitigation. 

 

Traditionally, infection risk has been assessed 

through airborne pollutant concentration metrics. 

Several studies have utilised computational fluid 

dynamics (CFD) simulations to evaluate ventilation 

strategies and their impact on airborne particle 

dispersion [9,11,12]. Research has explored natural 
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and mechanical ventilation designs, air distribution 

patterns, and physical barriers to control droplet 

transmission in settings such as classrooms, office 

spaces, and aircraft cabins[13,14]. However, these 

studies primarily focus on particle presence and 

concentration, often overlooking critical 

transmission parameters such as exposure duration, 

viral load, and individual susceptibility.  

 

To address these limitations, this study 

introduces a novel infection risk probability metric 

based on a transient Eulerian-Lagrangian CFD 

approach. The metric quantifies long-range airborne 

transmission by incorporating spatial-temporal 

particle concentration, exposure time, and clinical 

viral load data. This allows for a more realistic 

assessment of cumulative viral exposure over time, 

which is essential for understanding transmission 

risk in shared indoor environments. Given that 

human respiratory activities (e.g., breathing, 

speaking, coughing) generate droplets ranging from 

0.01 to 1000 μm [15], understanding the behaviour 

of these aerosols in ventilated spaces is essential.  

 

The CFD model is applied to a hospice 

communal space and captures airflow variations 

driven by fluctuating wind pressures on operable 

windows. By analysing the distribution of infectious 

aerosols and comparing it to exhaled CO₂ 

concentrations, the study identifies key differences in 

dispersion behaviour and highlights the importance 

of particle-based infection modelling for effective 

ventilation assessment. The communal space is 

demonstrated by Figure 1. 

 

 

Figure 1. The communal area of the UK 

Hospice.   

 

2. METHODOLOGY 

2.1 The Eulerian-Lagrangian CFD Model 

2.1.1 Background 

Accurately evaluating airborne infection risk, 

particularly for COVID-19, requires modelling viral 

emission, transport, and inhaled exposure over time. 

Infections may arise from prolonged exposure to low 

concentrations of virus-laden aerosols, reinforcing 

the importance of spatial and temporal resolution in 

dose estimation. The Lagrangian approach is well-

established in indoor air quality research for tracking 

aerosolised particles. It resolves forces such as drag, 

gravity, and turbulent dispersion, allowing accurate 

characterisation of airborne transport and deposition 

patterns and quantifying viral dose [13,14]. 

This study employs the Eulerian-Lagrangian 

CFD approach based on Crowe et al. [16], 

modelling air (continuous phase) via Eulerian 

equations while tracking particles (dispersed phase) 

with a transient Lagrangian method. The model 

simulates infectious particle transport during speech, 

outputting particle volume, count, and fraction per 

computational cell. This data, combined with clinical 

inputs, enables spatial-temporal infection probability 

estimation. 

2.1.2 The Eulerian Model 

As the governing equations for the mass, 

momentum, and energy equations, Navier-Stokes is 

used to model the unsteady incompressible flow field 

using an Eulerian approach: 

 
∂𝜌

∂t
+

∂(𝜌Ui)

∂xi

= 0 (1) 

 
∂(𝜌Ui)

∂t
+

∂

∂xj

(𝜌UiUj) 

= −
∂P

∂xi

+
∂

∂xj

(µ
∂Ui

∂xj

− 𝜌uiuj) 

(2) 

 
𝜕(𝜌𝑇)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗

(𝜌𝑈𝑗𝑇) 

=
𝜕

𝜕𝑥𝑗

(
µ

𝑃𝑟

𝜕𝑇

𝜕𝑥𝑗

− 𝜌𝑢𝑗𝜃) 

(3) 

 

where, 𝜌 is the density and ujθ is the turbulent heat 

flux vector, respectively. 

 

    The present authors have previously shown the 

importance of the choice of the turbulence model on 

the prediction of fluid flow and heat transfer [17–

19]. Consequently, the present authors have also 

investigated six different types of eddy viscosity 

models to determine the most feasible in predicting 

indoor air flow [20]. The φf model was chosen for 

its stability and near-wall performance and the same 
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model will be used in this present study. Since this 

a low-Reynolds-number turbulence model, the grids 

were adjusted to be very fine along the wall (the 

wall-adjacent cell typically extends only to y+ ≤ 1), 

in order for the turbulent boundary layers to be fully 

resolved.   

2.1.3 The Lagrangian Model 

The momentum equation for particles is derived 

from the balance between inertial forces and 

external forces applied to the particle: 

 

mp

dvp

dt
=

mp(vc − vp)

τr

+ mpg + F (4) 

 

Where, for a spherical particle with a diameter 

of dp immersed in continuous air, g is the 

gravitational force exerted on the particle, F 

represents additional forces acting on the particle 

surface, specifically the drag force (Cd), virtual mass 

force, and pressure gradient force all of which were 

modelled using the standard Lagrangian particle 

tracking approach implemented in the CFD solver.  

vc is the velocity of the continuous phase, vp is the 

particle velocity and τr is the momentum relaxation 

time scale computed as: 

 

τr =
2mp

𝜌cApCd(vc − vp)
 (5) 

 

where, 𝜌c is the density of the continuous phase 

and Ap is the projected area of the particle. The Drag 

force (Cd) is modelled through the Schiller-Naumann 

Correlation [21], which is a function of the particle 

Reynolds number: 

 

Red =  
𝜌c|vc − vp|Dp

μc

 (6) 

 

where, μc is the dynamic viscosity of the 

continuous phase and Dp is the diameter of the 

particle. 

 

2.1 Infection Risk Metric 

2.1.1 The Wells-Riley Model 

The Wells–Riley model estimates airborne 

infection probability (POI) as a function of inhaled 

quanta (n), defined as the dose causing infection in 

63% of susceptible individuals [22,23]. Assuming a 

uniform aerosol concentration: 

 

POI = 1 −  e−n =  1 −  e−(qc×IR×te)  (7) 

 

where, qc is the quanta concentration 

[quanta/m³], IR is the inhalation rate, and te is the 

exposure time. However, the model assumes well-

mixed, steady-state conditions, which rarely hold in 

indoor spaces with complex airflow and localised 

sources. This limitation motivates the need for 

spatially and temporally resolved approaches, as 

detailed in the following subsection. 

2.1.2 Virion Concentration and POI at Each 
Cell  

This study employs a Probability of Infection 

(POI) metric, incorporating particle count, exposure 

duration, and clinical data. Using CFD and a time-

dependent Eulerian-Lagrangian (E-L) model, the 

emission and distribution of infectious airborne 

particles (quanta) are computed. 

Initially, the quanta concentration at each 

computational cell is determined using Eq. (7), 

where the sum of the particle-to-air volume fraction 

(αp,cell) and the initial hydrated particle volume 

(𝑉𝑜𝑙𝑖,𝑐𝑒𝑙𝑙) is normalised by the evaporated 

desiccated volume and multiplied by the viral load 

cv, taken as 2.35109 [quanta/mL] [24]. This number 

is multiplied by 106 to convert to quanta/m3.  

The total inhaled quanta at each cell, (𝐷𝑐𝑒𝑙𝑙), is 

then obtained by integrating the quanta concentration 

over time, as expressed in Eq. (8). This value is 

subsequently substituted into the Wells-Riley 

equation to compute the Probability of Infection 

(POI) at each cell, using Eq. (9). The resulting POI 

values generate a spatio-temporal infection risk (IR) 

map, illustrating areas of elevated exposure risk. 

 

qc,cell = cv  
∑ (αp,cellj

t
j=0  Volpi,cellj

)

Volp
× 106  (7) 

 

𝐷𝑐𝑒𝑙𝑙  = 𝐼𝑅  ∫ 𝑞𝑐,𝑐𝑒𝑙𝑙  𝑑𝑡
𝑇

0

   [𝑞𝑢𝑎𝑛𝑡𝑎] (8) 

 

𝑃𝑂𝐼 = (1 − 𝑒(−𝐷𝑐𝑒𝑙𝑙) )  ×  100 [%] (9) 

2.1.3 Infection Risk Metric and Particle 
Assumptions 

A time-dependent Eulerian–Lagrangian CFD 

model was used to compute particle transport and 

quanta concentration at each cell. Concentration was 

calculated using Eq. (7), combining local particle 

volume fraction and hydrated droplet volume, scaled 

by a viral load of cv = 2.35 × 109  quanta/mL and 

converted to quanta/m³. The inhaled dose was 

integrated over time (Eq. 8) and used in the Wells–

Riley model (Eq. 9) to estimate the POI. 

 

Based on Li et al. [25], the volume-weighted 

mean diameter of respiratory droplets is 6.62 μm. 

This study assumes all droplets rapidly dehydrate 

into aerosols and adopts this diameter as 

representative of airborne transmission. Dehydrated 

droplet nuclei are 20–34% smaller due to water loss; 

Li et al. [25] estimated a final diameter equal to 

26.2% of the original, using data from Chao et al. 
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[26] and Li et al. [27], consistent with Stadnytskyi et 

al.  [28]. Accordingly, a shrinkage factor of 0.262 is 

applied in volume calculations. Viral decay is 

neglected to reflect a conservative, worst-case 

infection scenario. At this size, particle motion is 

governed by drag, gravity, and turbulence; Brownian 

diffusion was excluded and is noted as a limitation. 

Viral load was assumed proportional to droplet 

volume, as in [37], though finer particles may carry 

higher concentrations [29]. 

 

2.2 CO2 and Age of Air Numerical 
Models 

Occupant-generated CO₂ emissions are 

modelled using the species transport equation to 

compare infection risk (IR) and CO₂ concentration 

distributions.  

The mean ventilation effectiveness in the 

occupied zone (EOZ) is evaluated using the age of air 

(𝜃𝑎𝑔𝑒) [30], modelled via the passive scalar transport 

equation. This approach assigns a virtual "clock" to 

each air volume element, tracking the time elapsed 

since uncontaminated outdoor air entered a given 

cell. Consequently, this enables the assessment of air 

distribution and age across different office space 

regions. 

2.2.1 CO2 Species Transport Numerical 
Model 

The three-dimensional species transport 

equation to simulate the transport of CO2 within the 

office room is implemented in this study: 

  
𝜕(𝜌𝑌𝐶𝑂2)

𝜕𝑡
+

𝜕(𝜌𝑌𝐶𝑂2𝑈𝑗)

𝜕𝑥𝑗

=  
𝜕

𝜕𝑥𝑗

[𝜌𝐷𝐶𝑂2

𝜕(𝑌𝐶𝑂2)

𝜕𝑥𝑗

+
µ𝑡

𝜎𝑡

𝜕𝑌𝐶𝑂2

𝜕𝑥𝑗

] 

(10) 

 

where 𝑡 is the simulation time, ρ is the overall 

density of the mixture, 𝑌𝐶𝑂2 is the mass fraction of 

CO2, 𝑈𝑗 is the velocity where 𝑢1, 𝑢2, 𝑢3 are the 

directions in the x, y and z directions respectively, µ𝑡 

is the turbulent dynamic viscosity, σ𝑡 is the turbulent 

Schmidt number and 𝐷𝐶𝑂2 is the molecular 

diffusivity of CO2 in the mixture. The turbulent 

diffusion is accounted for through the term 
µ𝑡

σ𝑡
 .  

The occupants were represented by a box, 0.25 

m x 0.4 m x 1.2 m, in the computational model,  [31]. 

The exhaled CO2 was introduced via a small circular 

hole of 10-mm at the height of 1.1 m of the box. 

Table 1 summarises the boundary conditions for the 

occupant. The peak occupancy is 88 people. 

 

Table 1.  Boundary conditions for the occupant 

CO2 exhalation for each case. 

Activity 

CO2 

Exhalation 

Rate [L/min] 

Inlet 

Type 

Heat 

Source 

(W) 

Sedentary  0.31 [32] 
Circular 

Inlet 
75 

 

2.2.2 Age of Air Numerical Model 

The age of air is modelled through the passive 

scalar transport equation:  

 
𝜕𝜌𝐴

𝜕𝑡
+ 𝑢𝑗

𝜕𝜌𝐴

𝜕𝑥𝑗
−  

𝜕

𝜕𝑥𝑗
[𝐷

𝜕𝜌𝐴

𝜕𝑥𝑗
] − 𝑆𝐴 = 0  (11) 

 

where A is the passive scalar of the age of air, D 

is the diffusivity flux of the passive scalar, and 𝑆𝐴 is 

the source term for the age of air, which is a scalar 

flux with an inferred density of 1/s. The passive 

scalar’s diffusivity characteristics were set by 

increasing the Schmidt number and the Turbulent 

Schmidt number to a value of 1 × 109. Consequently, 

advection can dominate the transport of the time 

scalar when there is flow motion, whereas diffusion 

can operate on the scalar when there is little to no 

advection.  

 

Local and Mean Ventilation Effectiveness 

Air Changes per Hour (ACH) quantifies the total 

volume of air entering a space relative to its internal 

volume, representing the nominal ventilation rate. 

However, this metric only accounts for the total fresh 

air supply without considering its distribution within 

the space. 

 

To assess air distribution, local ventilation rates 

are calculated based on the age of air at each cell. 

This provides a more detailed evaluation of airflow 

patterns, ensuring a comprehensive understanding of 

ventilation effectiveness. The age distribution 

theory, as outlined in [33], forms the basis of this 

approach: 

 

𝑛𝑐𝑒𝑙𝑙 = 
1

𝐴𝑐𝑒𝑙𝑙
   (12) 

 

       Ventilation effectiveness, denoted as ncell, is 

determined by comparing the actual delivery rate of 

outside air with an ideal mixing scenario. In a 

perfectly mixed environment, where ventilation is 

uniform and concentrations are equal throughout, the 

local ventilation efficiency at each cell (Ecell) is 

calculated as: 

 

𝐸𝑐𝑒𝑙𝑙 = 
𝑛𝑐𝑒𝑙𝑙

𝑁
 (13) 

 

       According to ASHRAE [34], the occupied zone, 

referring to the area where humans occupy, extends 

up to 1.8 meters from the floor and 0.3 meters from 

the side walls. To determine the average ventilation 
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effectiveness in this zone (EOZ), we calculate the 

volume average of the local ventilation effectiveness 

within this range. This involves summing up 

products of Ecell and cell volumes, then dividing by 

the total cell volumes in the occupied zone. 

2.3 A Description of IES:VE Energy 
Modelling 

The Integrated Environmental Solutions Virtual 

Environment (IES:VE) is a comprehensive building 

performance simulation suite used by architects and 

engineers to optimise energy efficiency and occupant 

comfort. It has been validated against international 

standards, including ASHRAE 140 and CIBSE 

TM33, ensuring compliance with rigorous industry 

benchmarks [35].  

2.4 Cases Studied 

Figure 2 shows the computational domain of the 

hospice dining space. The passive ventilation system 

includes upper operable windows (red, labelled 1–4) 

for exhaust and lower intakes (blue, labelled 1–2) for 

fresh air supply. Internal doors (green, labelled 1–2) 

are opened under overheating conditions to allow 

cross-zone airflow. As a passive system, flow 

direction can reverse depending on wind and 

pressure, resulting in either positive or negative 

airflow through the openings. 

 

To capture realistic ventilation-driven airflow 

conditions throughout the year, hourly data from 

dynamic simulation was analysed using a custom 

script. This process identified 13 representative days 

that collectively span the full range of ventilation 

performance across all opening types, covering the 

minimum, maximum, and key quartiles (Q1, Q2, 

Q3). These selected cases ensure efficient yet 

comprehensive CFD coverage of both typical and 

extreme conditions, where openings may act as inlets 

or exhausts depending on wind-driven pressure 

differences. These cases are outlined by Table 2 

below. 

 

 

 

 

 

Figure 1. The computational domain of the 

communal area within the UK hospice used in 

the present study. 
 

Table 2. Boundary conditions for the occupant 

CO2 exhalation for each case. 

 

 

2.5 Acceptable POI Level 

 

The acceptable POI level, determined to be 7.5% 

in England based on worst case government 

statistics, is based on the methodology proposed by 

the authors in a companion paper [37]. 

2.6 Lagrangian Particle Injector 

The exhaled droplets (dispersed phase) from 

the infector are simulated using a transient 

Lagrangian model. This study implements "one-

way" coupling between the dispersed phase 

(airborne particles) and the continuous phase (air-

CO2 mixture). As confirmed in our companion 

paper [37], the volume fractions of the airborne 

particles are so insignificant that their 

displacement of the air-CO2 mixture is negligible. 

Consequently, the particle transport is affected 

only by the fluid motion, without influencing the 

air flow in return. The overall simulated time was 

5 minutes with a droplet time step of 0.01s. This 

time was sufficient for the IR level to reach the 

acceptable limit based on worst-case scenarios. 

The residuals were left to reach a minimum level 

of 10−6 to regulate the particle tracking’s 

accuracy. Table 3 demonstrates the numerical 

boundary conditions applied for the particle 

injector.  

Table 3. Boundary Conditions for the 

Lagrangian Particle Injector. 

Variable Value/Type Reference 

Injector  Type 
Point 

injector  
- 

Injection Rate 
1000 

[particle/s] 
[28] 

Injection Direction Normal  - 

Particle Diameter 6.62 [µm]  [25] 

Activity Speaking - 

Particle Injection 

Velocity 
4.07 [m/s]  [38] 

Particle 

Temperature 
34 [°C]  [39] 

Particle Deposition 

Rate 
0.285 [cm/s] 

[40] 
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3. RESULTS  

3.1 Distribution and Behavioural 
Analysis 

3.1.1 Contour Plots 

Figures 3 & 4 illustrate the Probability of 

Infection (POI) and CO₂ concentration contours 

along the horizontal plane (1.2 m above the floor) 

and vertical mid-span plane. The results indicate that 

airflow forces significantly influence the distribution 

of both infectious particles and CO₂, with higher 

concentrations in recirculation zones and low-

velocity regions, where airborne particles tend to 

accumulate. 

 

While CO₂ concentration and infection risk 

share distributional similarities, key differences are 

observed. The CO₂ species transport model exhibits 

‘smearing’ effects, where CO₂ disperses more 

uniformly from high- to low-concentration areas due 

to diffusion. In contrast, the infection risk 

formulation lacks a diffusion term, resulting in 

sharper concentration gradients and more localised 

risk zones. 

 

Given the extensive number of contour plots 

across multiple cases, only representative cases are 

presented. To facilitate a comprehensive comparison 

across all 13 cases assessed in this study, heatmaps 

are employed, offering a more insightful and 

quantitative analysis of POI and CO₂ distribution 

patterns. 

3.1.2 Heatmaps 

Figures 5 & 6 show the average Probability of 

Infection (POI) and CO₂ concentration at 1.2 m 

above the floor across all cases. Surface-averaged 

values are consistently higher than volume-averaged 

values, as the latter includes regions with zero 

infection risk and atmospheric CO₂ levels, lowering 

overall averages. 

 

Notably, high CO₂ concentration does not imply 

high infection risk, as CO₂ is exhaled by all 

occupants, while infectious particles originate from 

an infector. Infection risk varies with infector 

position and airflow direction, whereas CO₂ 

distribution remains unaffected. 

 

Elsarraj et al.  [20] trained an Optimised Random 

Forest (ORF) model using volume-averaged POI and 

CO₂ concentration, incorporating ventilation rate to 

distinguish CO₂ thresholds across occupancy levels. 

However, assuming a single infector led to 

overlapping CO₂ values for the same POI, affecting 

model accuracy. 

 

Analysing all surface and volume-averaged data 

was impractical due to overlapping CO₂ values at a 

given ventilation rate, which obscures clear trends. 

 

 Instead, heatmaps (Figures 5 & 6) were used to 

identify high-risk zones based on elevated infection 

probability. For these zones, only surface-averaged 

POI and CO₂ concentrations were extracted to 

provide a conservative representation of worst-case 

exposure conditions. 

 

 

 

 
Figure 3. Contour and vector plots of the POI 

and the CO2 concentration along the horizontal 

plane at a height of 1.2 m above the floor  

 

 

 

 

 
Figure 4. Contour and vector plots of the POI 

and the CO2 concentration along the vertical 

mid-span plane. 
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Figure 5. POI heatmaps for all cases for each 

zone.  

 

 
Figure 6. CO2 concentration heatmaps for all 

cases for each zone.  

 

4. Conclusion 

This study developed a CFD-based framework 

for evaluating infection risk in a UK hospice using a 

Probability of Infection (POI) metric derived from an 

Eulerian-Lagrangian (E-L) model. The results 

demonstrate that CO₂ distribution, while often used 

as a ventilation performance indicator, differs 

significantly from the spatial behaviour of infectious 

aerosols, primarily due to diffusion effects absent in 

the POI formulation. This discrepancy validates the 

need for direct particle-based modelling when 

assessing airborne infection risk. 

 

Heatmap analysis across multiple cases 

identified high-risk zones, revealing that infection 

risk is highly sensitive to infector position and 

airflow dynamics, rather than CO₂ concentration 

alone. These insights demonstrate the limitations of 

relying on CO₂ as a surrogate for exposure and 

highlight the value of spatially resolved CFD models 

in guiding ventilation strategies. 

 

By quantifying infection risk based on clinically 

informed exposure metrics and airflow behaviour, 

this approach offers a robust tool for assessing and 

improving ventilation effectiveness in sensitive 

healthcare settings. The framework may be extended 

to other high-risk environments, such as care homes 

or waiting areas, to support evidence-based infection 

control strategies in post-pandemic building design. 
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