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ABSTRACT

In this work, we discuss the application of the
One-Dimensional Turbulence-based (very) Large-
Eddy Simulation model, abbreviated as ODTLES,
to turbulent duct flow. ODTLES is a multi-scale
flow model in which an autonomous stochastic
One-Dimensional Turbulence (ODT) model, cap-
able of simulating the full bandwidth of time and
length-scales in a 1-D domain, is supplemented with
large-scale 3-D information coming from a very
large eddy simulation (VLES) grid. ODTLES is
more expensive than any other VLES, but could
be cheaper than highly resolved LES or, natur-
ally, than Direct Numerical Simulation (DNS). Un-
like Reynolds-Averaged Navier—Stokes (RANS) and
VLES, ODTLES does neither need a wall model,
nor a damping function. The correct near-wall be-
havior is naturally obtained from one SGS ODT do-
main that is locally wall-normal. The proposed hy-
brid (3-D/1-D) approach allows the resolution of all
relevant scales, modeling certain aspects of 3-D tur-
bulence on the SGS scale. Here, turbulent duct flow
is considered as an example, which poses a moderate
challenge for traditional LES due to emerging sec-
ondary flows that manifest themselves by corner vor-
tices that crucially depend on the accurate capturing
of small and large scale motions. Preliminary res-
ults indicate a reasonable match with DNS for mean
velocity profiles, although capturing secondary flow
structures remains a challenge at this stage. Further
refinements of the solver and modeling approach are
ongoing to improve accuracy and predictive capabil-
1ties.

Keywords: Duct flow, Large Eddy Simulation
(LES), Multiscale modeling, One-Dimensional
Turbulence (ODT), ODTLES, Turbulence model-
ing

NOMENCLATURE
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eddy rate parameter
Coupling term from grid j to
grid k for velocity component

i
i-th component of the forcing

field residing on an ODT line

indirection k
kernel function

pressure field on the LES

level o
eddy acceptance probability

friction Reynolds number
simulation time
i-th component of the velocity

field on the LES level
small-scale suppression para-

meter

kernel coefficient

assumed exponential distribu-
tion of eddy sizes

eddy position PDF

eddy size PDF

eddy size

Deconvolution operator
Convolution operator

i-th component of the velo-
city field on an ODT line in k

direction o
ODT aligned direction

eddy position
mapping function
viscous time-scale
time step for VLES
eddy sampling interval

kinematic viscosity

density

local time scale of a mapping
candidate

eddy frequency

duct height

duct length
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Re‘r [_]
Ur [m/s]

Mt (xi, )} [-]

friction Reynolds number
friction velocity
eddy mapping event

Subscripts and Superscripts

e eddy event

i component of vector

k direction of ODT line

* intermediate values (non-divergence-free
values)

1. INTRODUCTION

Turbulence, known for its intricate and chaotic
flow patterns, is a phenomenon of great importance
in various engineering and scientific fields. From op-
timizing the aerodynamic performance of aircraft to
enhancing mixing processes in chemical reactors, a
thorough understanding of turbulent flows is crucial
for improving design efficiency, predicting system
behavior, and ensuring operational safety. Turbulent
flows impact the effectiveness of transportation sys-
tems, the spread of pollutants in the environment, and
the thermal management in industrial applications.
Despite its ubiquity, accurately modeling turbulence
remains one of the most challenging aspects of fluid
dynamics.

Direct Numerical Simulation (DNS) offers full
resolution of all turbulent scales and structures. The
computational demands of DNS are, therefore, ex-
tremely high when flows are highly turbulent (the
highest Reynolds number achieved to date with
DNS for turbulent channel flow is Re; =~ 10,000
[L]). In contrast, Reynolds-Averaged Navier—Stokes
(RANS) simulations and Large Eddy Simulations
(LES), which are more commonly used in practical
engineering applications, often struggle to achieve
the necessary accuracy, particularly in complex flow
scenarios. This is especially true for wall-bounded
flows, where traditional turbulence models rely on
simplifying assumptions such as small-scale iso-
tropy or local equilibrium of the near-wall flow,
which has notable limitations due to which altern-
ative approaches are still being actively researched
(e.g. [2)). These assumptions, including low-order
statistical closure models and the law-of-the-wall,
are inadequate when the details of small-scale tur-
bulent fluctuations are critical. To overcome the lim-
itations of wall models and diffusive or filter-based
turbulence models, alternative approaches such as
stochastic turbulence models have been developed.
One such model is the One-Dimensional Turbulence-
based Large Eddy Simulation (ODTLES) model
[3, 4] introduced more than a decade ago, and fur-
ther developed more recently by [5, 6]. ODTLES
aims to achieve the fidelity of DNS by resolving
all relevant time and length scales within colum-
nar stacks of dimensionally reduced subdomains. In
these stacks, the three-dimensional aspects of tur-
bulence are modeled using a stochastic process on
a one-dimensional domain, significantly reducing
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computational costs while maintaining full-scale res-
olution. Although still in its developmental stages,
ODTLES has demonstrated promising results, par-
ticularly in simulating turbulent channel flows with
friction Reynolds numbers up to Re; = 2040 on a
single Banana Pi M64 computer [6].

2. PRELIMINARY STUDY CASE

As a preliminary test case, we apply the
ODTLES model to turbulent flow in a square duct
and validate the results against Direct Numerical
Simulation (DNS) data provided by Zhang et al. 7.
The geometric dimensions of the duct are chosen to
match those used in the DNS study, and are illus-
trated in Figure|T]

w=1
Figure 1. Computational domain of the square
duct configuration.

No-slip boundary conditions are applied at the
duct walls, while periodic boundary conditions are
imposed at the inlet and outlet in the streamwise dir-
ection. To drive the flow, a constant streamwise pres-
sure gradient is applied. The magnitude of the pres-

uz

sure gradient is prescribed as Z, where u; is the fric-

tion velocity and H is the duct width. The value of
the kinematic viscosity is then calculated as v = M,;f

Simulations were performed for friction Reyn-
olds numbers Re; = 300 and 600. In both cases,
the base LES grid has a resolution of 10 x 10 x 10,
while the auxiliary ODTLES grids (see figure [3) are
refined to ensure that the first cell sizes in the y and
z directions correspond to wall units y* and z* less
than one.

This very coarse base LES resolution has been
utilized because we are still working on the al-
gorithm, although in previously it has been shown
that using a base resolution that is slightly higher (
16x16 resolution in the cross section) to be sufficient
for moderately turbulent duct flows [5]].

3. ONE-DIMENSIONAL TURBULENCE

Kerstein’s One-Dimensional Turbulence model
(ODT) [8]] is a stochastic modeling approach that
utilizes dimensionally reduced map-based advection
modeling. It is conceptualized as a standalone tur-
bulence model that operates on a one-dimensional
domain, akin to the visualization of a turbulent flow
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field from within a turbulence line-of-sight, see also
[8, 19]. The model simulates the effects of three-
dimensional turbulence through a discrete sequence
of stochastic events, which are commonly known as
eddy events. These eddy events are represented by a
model representation of the effect that vortical mo-
tions cause in 1-D scalar profiles within turbulent
flows. Assuming a 1-D domain aligned in direction
Xxr, where k € {1,2,3}, eddy events are implemen-
ted as a triplet map of one-dimensional scalar pro-
files, Y(xx) — Y[ f(xx)], where f(x;) is the mapping
function. The eddy events are sampled in time with
an interval Aty,, wWhere Aty,,, < T,, with 7, be-
ing the viscous time-scale. This guarantees full time-
scale resolution of the turbulent flow. Operationally,
the sampling follows a Poisson stochastic process,
achieving a pre-specified mean acceptance probab-
ility and a corresponding mean eddy rate. Details
of the sampling process can be found in [10]. The
mean acceptance probability is calculated as the on-
line average of the different acceptance probabilities
for each eddy event candidate, P, .44y, Which is es-
timated as

Atsamp
P(yo, L, Oh(D)g(vo)”

In this equation, h(l) and g(xxp) are presumed
probability density functions (PDFs) for eddy sizes /
and eddy positions x; o, respectively. Indeed, g(xio)
is a uniform PDF, given that it is assumed that turbu-
lent eddies can occur with equal probability every-
where along the 1-D domain. Conversely, f(I) is
an assumed exponential distribution of eddy sizes,
see details in [9]. The local time scale of an indi-
vidual mapping candidate is denoted by 7. The term
"candidate" is used because not all mappings yield
a physical time-scale or eddy turnover time 7. This
is best explained when defining the eddy frequency
77! based on dimensional arguments for extractable
kinetic energy. Operationally, 7! considers the fol-
lowing integral kinetic energy balance for the eddy
candidate with size /, where a proportionality coef-
ficient C has been inserted in order to indicate the
direct proportionality, see details in [8} 9]

)

Pa,eddy =

2
-Z

I 1
o cllz [; Z a fl Uk (1, fOa))K () doxy
(2

In order for 7! to be a real number, the quant-
ity within the square root must be positive. To that
extent, the parameter Z acts as a dimensionless coef-
ficient for eddy suppression. Specifically, it restricts
the implementation of small eddies, and can take the
form of either a Reynolds number or a viscous co-
ordinate following algebraic manipulation of Equa-
tion2] Both C and Z are then turbulence model coef-
ficients indicating the empiricism associated with the
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ODT model. Note that uf(t, f(xx)) represents the
mapped profile for the velocity component «; (which
is represented in the domain aligned in x;) at time
t, while K = x; — f(xx) is a kernel function (see
[8]). Note that we also use i € {1,2,3}, similar
to k. Reasons for the apparent notation redundancy
regarding index k will be clarified later. Accept-
ance of an eddy event candidate, i.e., the mapping
uf.‘(xk) — uf.‘( f(xz)), also implies a linear transforma-
tion of the post-mapped profile ui‘ (f(xi))+c;K, where
¢; is a (uniform) kernel coefficient which depends on
the form of the scalar velocity profile. Details of the
calculation of ¢; can be found in [11}9].

For an ODT line oriented in the x;-direction,
there is also a 1-D governing partial differential equa-
tion, which in the case of low Mach constant property
flow can be written as

T
= f D Ml (e D)ot — 1,)dt
ODT 0
2k

+v—s + F}
ox;

6145‘
o

3)

where M{uf.‘(xk,t)} is one transformation of the
form uf.‘(xk, H — uff(f(xk), 1) + ¢;K(x;). This trans-
formation can be implemented several times in an
intermittent fashion during the numerical time integ-
ration of the 1-D PDE, which is the reason why a
summation over eddy events e appears in Equation
[l The delta function in Equation [3]is only written
for the purpose of its integral identity returning a dis-
crete value (discrete eddy events in time), whereas
said integral implies the entire simulation time 7. As
commented before, eddy events are evaluated using
a predictive approach based on the current flow state
and a sampled eddy size / and position x;o. When
an eddy event is accepted, the diffusive (and forcing)
terms of Equation 3 are advanced in time up to the
moment in which the eddy event trial is set to oc-
cur. This process is commonly referenced as a catch-
up diffusion event in ODT. Additionally, in Equation
F lk is an acceleration term due to a corresponding
body force.

To illustrate the impact of eddy events and the
subsequent diffusion process on the velocity profile,
we present a plot showing an initial velocity profile,
the profile after the mapping of an eddy event, and
the profile after the catch-up diffusion in Figure[2]

4. MODEL EXTENSION: 3-D ODTLES

In order to supplement VLES information to
ODT, and extend the model to its 3-D counterpart,
ODTLES, it is necessary to consider modifications
to the standalone ODT implementation. Instead of
representing a 3-D velocity field with three velocity
components, as it is usual in the standalone ODT
vector formulation, see [11l], the ODT module in
ODTLES represents only two velocity components
within the 1-D domain. To that extent, we redefine
the ODT velocity field uf by making i and k permuta-
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Figure 2. Visualization of map-based advection
and diffusion operators for a smooth initial pro-
file, the profile after eddy mapping, and the pro-
file after catch-up diffusion.

tions of {1, 2, 3}, with i # k. Thus, the velocity com-
ponent aligned in the direction of the ODT domain is
not governed by Equation [3] Having said that, in or-
der to develop a coherent interpretation of ODTLES,
it is necessary to define operators relating the differ-
ent scales and numerical grids (e.g., the VLES and
the ODT grid). The one-dimensional filtering oper-
ator [/;] generates a coarsely resolved velocity vari-
able from the finely resolved velocity in the x; direc-
tion:

k 1 e k
Ui(X, t) = [LeJu; (X, 1) = AX, \f;A—AZXk u; dxi (4)
Here, X is the resulting coarsened grid (previously
xx) with grid cell sizing Ay,, while U; is the corres-

ponding large-scale velocity field.

4.1. Spatial discretization strategy

ODTLES is a multi-scale model that operates
on meshes with different levels of refinement. The
coarsest resolution or large-scale information level is
represented in a (V)LES grid, whose resolution is set
according to the standard practices used in VLES or
coarse RANS simulations. Additional to the VLES
grid, we introduce three supplementary grids, which
we reference as ODTLES grids. Each of these three
grids are equivalent to the VLES grid, but feature re-
finements in each of the three principal Cartesian dir-
ections, respectively. The level of said refinements
is set according to the Direct Numerical Simulation
(DNS) resolution requirements for the smallest tur-
bulent scales in each respective direction. To that ex-
tent, the memory requirements for ODTLES can be
estimated as approximately ~ SN\Z,LESNDNS, where
NvyLgs and Npys are the VLES and ODT grid resolu-
tions, respectively. This is significantly lower than
the memory requirements for DNS, which can be
roughly estimated as ~ N> Consequently, for a

DNS*
fixed LES resolution, the cost of ODTLES for in-

4

creasing Reynolds numbers varies linearly, in con-
trast to the cubic variation expected for DNS [12].
Overall, each ODTLES grids is the result of an em-
bedding of a set of parallel 1-D ODT domains, as
seen in Figure This geometric configuration re-
stricts the application of the current ODTLES model
to structured meshes. Although ODTLES is not fun-
damentally restricted to equidistant meshes, the cur-
rent implementation prioritizes equidistant meshes
for simplicity (grid discretization in every direction
is equidistant, although it may be different across dir-
ections).

In ODTLES, the velocity components uf‘ corres-
pond to velocity fields represented in an ODTLES
grid refined in direction x;. Conversely, the coarsely
resolved pressure and velocity variables in the VLES
grid are denoted as P and Uj, respectively.

T[] i’

LES grid

ODTLES grids

Grid k=3

Axy U39
é LER]
AX.

A3

ODT domain

Figure 3. ODTLES model structure, showing the
primary LES grid and the three supplementary
ODTLES grids with refinements in the principal
Cartesian directions.

A consistency condition needs to be fulfilled
between the velocity fields, such that

Ui = [Lk]uf,  for every k &)

The latter consistency condition implies that the
filtered velocity field representation of all ODTLES
grid represented velocity fields should be equivalent,
see also [3]].

In contrast with the precepts of the filtering op-
eration defined in Equations [ and [3] it is in general
not possible to perfectly reconstruct a field uf? from
its large-scale counterpart. That is, the filtering op-
erator has no unique inverse, such that, in general,
[l,:'][lk] # 1. Nevertheless, Schmidt et al. [3] pro-
posed a numerical approximation for the refinement
of coarsely resolved information, i.e., an algorithm
for the deconvolution operator of coarse fields [l,;l].
Said algorithm was later improved by Glawe [3] to
address the issue of artificial extrema generation near
no-slip boundary conditions. The algorithm in [3} 5]
is high-order accurate and avoids the introduction of
noticeable discontinuities. It also fulfills an import-
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ant integral constraint, namely,
Ui = [LIG1U; (6)
An example of the application of [l,:l] with k be-

ing the wall normal direction in our duct case is visu-
alized in Figure ]

oo,
25 o %
20 d hd
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Figure 4. Example of the deconvolution algorithm
at work. a) The deconvoluted fine-scale-resolved
velocity together with the coarse-scale velocity. b)
Visual representation of the VLES grid and the
selected ODT domain along which the deconvolu-
tion was done (indicated by the extended local y
axis shown in red).

4.2. ODTLES governing equations

The 3-D extension of the standalone ODT model
with LES support, ODTLES, can be written as fol-
lows for the velocity component u;, i € {1,2,3}1in a
grid refined in direction xi, k # i, k € {1, 2,3}

o __ o[y AUY) o)

P 0X; 0X; Xy
2,k k
+ y% + % + CJ_% — la_P
x> Ot|opy 1 pOXi

5

(7

Note that the Einstein summation convention
is omitted in equation [7} implying that there are
actually six equations similar to [7] which must be
solved simultaneously (2 velocity components in 3
ODTLES grids). The corresponding ODTLES con-
tinuity equation, or zero divergence condition, is only
satisfied at the VLES level, see [5]], and it is written
as

U,  oU;
+

U,
%" % 0 (8)

Xe

In equations |Zl and [8] p denotes the density.
Also, the term du;/Otlopr is the entire ODT ac-
celeration (or time-advancement) given by Equation
Bl Such term considers the standalone ODT time-
advancement of one ODT stack within the ODTLES
grid, during T = Atyrgs, the latter being a time-
step required for stable numerical integration on the
coarse VLES grid level. This implies that the numer-
ical time-advancement of Equation[3|utilizes an eddy
sampling procedure Afgmp < 7, and catch-up dif-
fusion events with time-stepping Afopt < AtyLgs,
where again, Afopr is a numerical time-step re-
quired for stable time-integration in the ODT do-
main (hence, compliant with the corresponding CFL
condition). We note that the standalone ODT time-
advancement imposes a limit on the maximum eddy
size to be sampled from the presumed eddy size PDF
h(l), see [10,[13]]. This limit is maintained in the stan-
dalone ODT advancement which is part of ODTLES.

It is also noted that we indicated lowercase and
uppercase variables distinctively in Equations [7] and
@ On one hand, lowercase variables indicate the
finely resolved fields or directions, while, on the
other hand, uppercase variables denote the VLES
fields and directions. As a notation example, we note
&*uf /0X? as being a coarse diffusion operator on u¥,
the finely resolved velocity field defined on grid k
(finely resolved in x; direction); said coarse diffusion
operator considers the VLES grid cell size AX; for
the diffusion estimation (recall that i # j # k). Also,
note that all advection terms are defined at VLES
level, with the VLES velocity components U;, U,
Ui. All advection effects are simply deconvoluted
from the VLES grid to each ODTLES grid.

The term C{ “in Equation [7)is a coupling term
that facilitates the communication between ODTLES
grids. This allows the coupling of the ODT-modeled
turbulent advection from the array of 1-D domains
which conform the ODTLES grid refined in x; dir-
ection to the ODTLES grid refined in x; direction.
In order to avoid double-counting of the forcing term
from the standalone ODT advancement in ODTLES
grid j in the ODTLES grid k, the forcing term is sub-
tracted from the time-advancement. In fact, the ac-
celeration term Buf /0tlopr is better understood as a
velocity change in a time interval 7 = Aty gs, for the
purpose of the coupling represented by C l] K These
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considerations lead to the definition of C l’ ~kas

- F’) 9)
ODT

Figure [5] shows a visualization of the instantan-
eous vortical structures, represented by Q-criterion
iso-surfaces, alongside the instantaneous velocity
magnitude.

J

. ou:
Jj—k -1 i
T =10 —

C; [ ][]][ E

Figure 5. Instantaneous flow structures in the
square duct. The left half of the domain shows
iso-surfaces of the Q-criterion highlighting vor-
tical structures, while the right half displays the
instantaneous velocity magnitude. Visualization
performed on a mesh of a higher resolution for
visualization quality.

Equation [7] is solved using a finite-volume
method (FVM) discretization with the standard mid-
point rule for locating all flow variables at cell cen-
ters. Standard upwind interpolation schemes are
used for the advective fluxes, and linear interpola-
tion schemes are used for the diffusion fluxes. It
is noted that this discretization method is different
from previous ODTLES implementations relying on
a staggered grid logic, see [6, 5]. That is, we have
transitioned to a collocated approach. The numer-
ical time integration method is defaulted to an expli-
cit Euler scheme. However, we note that an implicit-
explicit scheme for better stability was proposed in
the staggered grid logic in [6].

Finally, we comment on the pressure gradient
term 0P/dX; in Equation It is important to note
that the pressure variable P is only defined on the
VLES grid level. Applying a projection method,
we split the time-advancement of Equation [7] into a
predictor and a corrector step. The predictor step
considers all momentum contributions other than
the pressure gradient. This causes a change in the
ODTLES velocity fields, e.g., uf’" to uf’* where we
have used the superindex n to indicate a time dis-
cretization, such that time-advancement takes place
from ¢* to t*, with Atyigs = t* — ¢". Note that all
advection effects are calculated on the VLES grid
at time ¢, e.g., using the velocity field U}. Fol-
lowing the predictor step, we obtain the intermediate

6

non-divergence-free velocity fields u*". Due to C/ -k,
these velocity fields are consistent across ODTLES
grids, such that we can obtain the VLES intermedi-
ate velocity field using the filtering operator,

U; = [t (10)

The intermediate predicted VLES velocity fields
are then used for the corrector step in order to en-
force zero-divergence at the VLES level by solving
the following pressure Poisson equation,

o*P 9*P 8P

0X; 0X; X}
__p (2u 0 9
Atvigs | 0X; 17).4 j Xy

After P is found from equation[TT] the VLES ve-
locity field U, is updated to the next time-step for ad-
vancement #'*! as

Ul = Ut - Aty gs OP

1 l p aX,

(1)

12)

The change Ul.’“fl — U} over Atyygs is considered a
source term (after deconvolution) to update uf‘* to

uf’"”. This updates the information in the ODTLES
grids. Note that we obtain the mass-fluxes required
to evaluate the divergence of U] in equation

by linear interpolation. Said face-centered mass-
fluxes are also updated with equation[I2]using a face-
centered pressure gradient (calculated using the col-
located pressure values). They are stored and used
later for the calculation of the upwinded VLES ad-
vection effects in equation 7}

5. SOLVER IMPLEMENTATION

The current ODTLES codebase represents the
second C++ rewrite of the original Fortran code de-
veloped by Christoph Glawe in [6]]. The initial C++
codebase, a porting used in a previous publication in
[6]], was developed in order to modernize the original
code and achieve high modularity and expandability.
The current version is a highly refactored iteration of
that codebase. The strategy and experiences of this
process have been documented in [14]], highlighting
the importance and benefits of clean code principles.
By adhering to these practices, we have completed a
comprehensive refactor of the remaining parts of the
algorithm, which we anticipate will facilitate quick
and relatively easy improvements and expansions of
the current ODTLES algorithm.

As discussed in [12], ODTLES greatly benefits
from parallelization. In its current version, we utilize
OpenMP to parallelize major parts of the algorithm.
Most notably, we advance the ODT part of the mo-
mentum equations in parallel for each ODT line.
Running the ODTs in parallel is observed to have ex-
cellent parallel efficiency due to the numerous indi-
vidual tasks, each taking roughly the same amount
of time, with tasks that are substantial enough such
that the overhead of thread creation is not significant.

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors



Similarly, all deconvolution operations, being one-
dimensional, are parallelized using the same logic.
These operations are also observed to exhibit high
parallel efficiency, although we expect slightly worse
performance as in the ODT part, since the tasks are
not as computationally expensive.

For the advancement of the remaining parts
of the momentum equations, we have divided the
available threads into three groups—one for each
ODTLES grid—and perform the explicit advance-
ment in parallel within each group. This approach
is also observed to yield a good parallel efficiency.

In the current code version, the pressure Poisson
problem of Equation[TT]is solved using the Eigen lib-
rary’s SparseLU solver [[15]. While a strict perform-
ance measurement has not been carried out for this
part of the algorithm, we anticipate that it will greatly
benefit from further parallelization efforts. In the fu-
ture, we plan to utilize Hypre’s multigrid solvers [[16]
as in the older ODTLES versions in [5} 6], which
are designed to run in parallel and are well-suited for
large-scale linear systems. This transition is expec-
ted to further enhance the efficiency and scalability of
our solver, although we stress that the bottleneck of
the algorithm should not be in the Poisson problem
anyway, since this is only solved at the large-scale
VLES grid level.

6. PRELIMINARY RESULTS

We have conducted simulations of turbulent flow
in a square duct at friction Reynolds numbers Re; =
300 and 600.

In the current setup, we are actively fine-tuning
the value of the model’s C parameter, while keep-
ing the Z parameter fixed at the standard value com-
monly used in standalone ODT studies. These ad-
justments aim to optimize the balance between model
fidelity and computational efficiency.

So far, preliminary results demonstrate that the
refactored ODTLES implementation is capable of
producing mean streamwise velocity profiles along
the wall bisector that agree reasonably well with ref-
erence DNS data by Zhang et al. [7], as shown in
Figure[6]

While previous work has shown that ODTLES
can capture the emergence of secondary flows in duct
geometries [S]]), the present solver—undergoing sub-
stantial algorithmic restructuring—has not yet suc-
cessfully reproduced these secondary motions. This
limitation is currently under investigation.

Furthermore, we are exploring additional al-
gorithmic improvements, particularly concerning the
treatment of advection terms within the ODTLES
framework, with the aim of enhancing accuracy
while not significantly decreasing performance.

7.SUMMARY AND OUTLOOK ON ON-
GOING AND FUTURE WORK

In this study, we presented the implementation of
a recent version of the One-Dimensional Turbulence-

7
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Figure 6. Comparison of mean streamwise velo-
city profiles from ODTLES and DNS [7] at Re, =
300 and 600.

based Large-Eddy Simulation (ODTLES) model
within a newly refactored C++4 codebase. This
framework provides increased flexibility, maintain-
ability, and testing capabilities, allowing for the
use of arbitrary boundary conditions on a structured
finite-volume collocated grid.

We applied the model to turbulent flow in a
square duct, a challenging test case due to the pres-
ence of secondary flows and corner vortices. While
preliminary results show reasonable agreement with
DNS data in terms of mean velocity profiles along the
wall bisector, the current solver has not yet been able
to fully capture the complex secondary flow struc-
tures observed in experiments and previous ODTLES
studies [3].

This limitation is attributed to ongoing al-
gorithmic restructuring, especially concerning the
treatment of advection terms, and highlights the need
for further refinement. Future work will focus on ad-
dressing these challenges and performing additional
tests and comparisons, with the goal of achieving ro-
bust and accurate predictions of three-dimensional
flow features in duct geometries.
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