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ABSTRACT

Collateral blood flow redistribution is crucial in
ischemic stroke recovery, yet the role of leptomen-
ingeal anastomoses (LMAs) remains poorly charac-
terized. Current computational models lack repres-
entation of patient-specific redistribution under vary-
ing ischemic conditions. As such, this study invest-
igates LMA functionality using patient-specific data.
A 0D peripheral artery model, informed by anatom-
ical measurements and Circle of Willis (CoW) ves-
sel radii from medical images, is constructed using
a stochastic sampling approach. To identify LMA
configurations that align with measured data, island
Genetic Algorithm (iGA) optimises LMA configura-
tion by minimizing residuals between computed and
measured perfusion flow rates from Single Photon
Emission Computed Tomography (SPECT), with 4D
flow MRI (magnetic resonance imaging) data serving
as inlet flow rates. Case studies of two patients
with varying degrees and locations of internal ca-
rotid artery stenosis reveal redistribution patterns
consistent with physiological observations, includ-
ing anterior-directed perfusion and inter-hemispheric
redistribution. Topology analysis reveals a trade-off
between LMA radius and pressure difference, with
larger radii forming between arteries at lower bifurc-
ation depths, enhancing flow rate despite diminish-
ing pressure differences. By leveraging measure-
ment techniques, this study offers new insights into
patient-specific LMA morphology, with potential ap-
plications in refining more detailed vascular models
for clinical and research use.

Keywords: cerebrovascular haemodynamics, col-
lateral blood flow, genetic algorithm, leptomenin-
geal anastomosis, stochastic vasculature genera-
tion

NOMENCLATURE

G [%I/{Sg] conductance

H [-] number of vascular regions
J [-] cost function

L [mm] length

(0] [mL/s] flow rate

R [";TLI/JSg ] resistance

d [-] bifurcation depth

p [mmHg]  pressure

r [mm] radius

u [Pa - s] viscosity

T [mmHg]  fluid shear stress

Aiyr [—] length-to-radius ratio
N [-] node

Res [M] effective resistance

mL/s

Subscripts and Superscripts

Co computed

Sp SPECT

int internal

1. INTRODUCTION

Collateral blood flow plays a critical role in
maintaining cerebral perfusion during arterial occlu-
sions [1} [2], yet its assessment remains a challenge
in both clinical and computational settings [3]. Tra-
ditional imaging techniques such as 4D Flow MRI
and SPECT provide valuable insights into cerebral
haemodynamics but are often limited by spatial res-
olution and qualitative interpretation, particularly in
the context of small collateral vessels such as LMAs.
These vessels, typically less than 0.3 mm in diameter
[4], contribute to blood flow redistribution between
vascular territories, yet their functional significance
and flow dynamics remain difficult to quantify dir-
ectly from imaging data.

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors



Computational fluid dynamics (CFD) offers a
complementary approach by enabling quantitative
assessment of collateral circulation. Unlike imaging-
based methods, CFD allows for controlled parameter
variation, facilitating sensitivity analyses and pre-
dictive modelling of haemodynamic changes under
different physiological and pathological conditions.
However, conventional CFD methods, including 3D
and even 1D simulations, are computationally intens-
ive and impractical for large-scale uncertainty ana-
lyses or real-time clinical application [S]]. As a res-
ult, 0D modelling has emerged as a viable alternat-
ive, offering an efficient means to simulate cerebral
blood flow while preserving essential flow redistri-
bution characteristics [6].

Despite its advantages, traditional 0D models
often simplify vascular territories as isolated com-
partments, with collateral connections represented
by literature-derived resistances rather than patient-
specific data [[7]. This simplification limits the abil-
ity to investigate collateral recruitment dynamics in
an anatomically realistic manner.

To improve the physiological accuracy of flow
simulations while maintaining computational effi-
ciency, a more refined OD modelling framework is
needed—particularly for representing the peripheral
vascular network. A key challenge in this approach
is the scarcity of patient-specific vascular data, as dir-
ect segmentation of small vessels like LMAs is often
impractical in clinical settings. To address this, syn-
thetic vasculature generation offers a viable solution,
enabling the creation of vascular networks that reflect
anatomical variability with minimal input data [8].

This study presents a 0D modelling framework
that integrates flow rate measurements with syn-
thetic vascular network generation to enhance collat-
eral circulation assessment. By minimizing reliance
on explicit vascular segmentation, this approach en-
ables the simulation of patient-specific flow dynam-
ics without requiring detailed anatomical reconstruc-
tions. The model is designed to be computationally
efficient via vasculature lumping to a certain extent
without the loss of essential structural information,
allowing for rapid simulation of collateral flow scen-
arios under varying conditions. Through this frame-
work, it is hoped that it would advance the prac-
tical application of CFD in cerebrovascular research,
bridging the gap between imaging-based assessments
and predictive haemodynamic modelling.

2. METHOD

This study aims to create an explicit and com-
putationally efficient vascular network model that in-
cludes LMAs, to study how they redistribute blood
flow. Synthetic vascular trees are generated using
anatomical data, such as bifurcation patterns and
artery sizes from cadaver studies, with a stochastic
approach to model variability in the generated struc-
tures. Six vascular trees, one for each vascu-
lar region, are selected for fluid simulations, with

patient-specific 4D flow MRI data providing bound-
ary conditions to reflect real physiological condi-
tions. LMAs are then positioned to connect these
trees, mimicking the restoration of blood flow in re-
sponse to blockages. The placement of LMAs is op-
timized using iGA, which minimizes the difference
between simulated flow rates and those measured by
SPECT. This process is repeated over multiple iter-
ations to generate different combinations of vascular
trees and LMA configurations, ensuring that the best
arrangements are found while adhering to physiolo-
gical constraints. The overall goal is to identify the
LMA placements under a range of potential patient-
specific peripheral vasculature that recreate the blood
flow redistribution shown in measured data.

Vasculature Patient-specific
generation via = CT segmentation
sampling data

!

A range of viable
synthetic vasculature

|

Explicit Vascular network
assignmentof = with random LMA
LMAs position configuration

Anatomical data
from literature

J Patient-specific
measured input
= flow rate data +
reference

l perfusion data

Fluid simulation +
iGA optimisation

Vascular network
with patient-specific
LMA configuration

Figure 1. Flowchart depicting the process of de-
ducing patient-specific LMA placement for blood
flow redistribution using synthetic vascular trees
and patient-specific flow rate data.

2.1. Data Acquisition

To generate a synthetic vasculature model for
each of the six vascular regions, only the radii of
the six efferent arteries of the CoW —the anterior,
middle, and posterior cerebral arteries (ACA, MCA,
PCA) on both hemispheres—are required. This dif-
fers from traditional methods that rely on imaging
beyond the CoW, reducing the dependency on high-
resolution medical images. Any loss in model resol-
ution is addressed through uncertainty analysis, con-
sidering all plausible vasculature based on available
data.

The inlet radii of the peripheral vasculature were
derived from segmented CT images, with vessel
centrelines extracted and smoothed using software
“V-Modeler” [9]. The average radii along these
centrelines were computed for use as model inlets.
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Regional perfusion distributions were derived
from SPECT imaging [10]], with patient-specific vas-
cular regions identified through shape registration
between SPECT images and an atlas vascular re-
gion map. Voxel intensity values were then used
to estimate regional flow rates. Since total cereb-
ral blood flow (CBF) measured by SPECT and 4D
Flow MRI differs, SPECT-derived flow rates were
adjusted to match total CBF, which was determined
by summing the MRI-measured flow rates of the in-
ternal carotid and basilar arteries, as 4D Flow MRI
provides the most accurate measurements in larger
arteries. Meanwhile, flow entering the peripheral re-
gions through the six efferent arteries of the CoW
was obtained from 4D Flow MRI. Similar to the
SPECT-derived values, the outflow rates at the CoW
were scaled based on inlet MRI data.

2.2. Sampling and Generation of Vascular
Tree Models

To ensure anatomical accuracy, the vascular tree
model is constructed based on observed anatomical
structures, referencing Perlmutter and Rhoton [11],
Gibo et al. [12], and Zeal and Rhoton [13]]. Across
all six vascular regions, the vasculature follows a
consistent bifurcation pattern: perforating trunks tra-
verse the brain, cortical branches extend perpendicu-
larly, and perfusion arterioles supply the cortex. The
model is represented as a graph, with nodes corres-
ponding to bifurcation points and edges representing
vessel segments, starting with an inlet node at the
CoW, marking the entry to the peripheral vascular re-
gion. Given a list of candidate cortical branches from
literature, each branch is probabilistically determ-
ined based on observed frequencies. If fenestration
(multiple copies of the same branch) is observed, the
number of copies is sampled from a Poisson distribu-
tion, and the branch radius is sampled from measured
data ranges. After the first cortical branch radius is
assigned, the subsequent perforating trunk segment
radius is calculated using Murray’s law, which states
that the cube of the parent vessel radius equals the
sum of the cubes of the daughter vessel radii. This
process repeats for all candidate branches in the vas-
cular region. If at any point the perforating trunk ra-
dius reduces to zero due to sampling variability, the
entire process restarts from the first cortical branch
candidate.

Perfusion arterioles extend from each cortical
branch, assuming equal bifurcation at each level, un-
til reaching the cut-off radius of 0.025 mm. Given
depth d as the number of bifurcations from the cor-
tical branch, the arteriole radius at depth d is given

by Eq. (I):

|\
rg=ro- (W) (D)

Assuming a constant length-to-radius ratio Ay,
the vessel resistance is computed using Eq. (2)), based

on Poiseuille’s law, which is derived from the Navier-
Stokes equation under the assumptions of steady, in-
compressible flow in a cylindrical vessel:
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Given the homogeneous structure of perfusion

arterioles, the total resistance of the arteriole tree at

depth d is obtained by series-parallel resistance ag-
gregation, as described by Eq. (3):

R
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Where the radius and resistance at each depth k
can be calculated using Eq. (I) and Eq. (2). This re-
duces the number of nodes from 2¢ + 1 to just 2, sig-
nificantly improving computational speed for LMA
optimization, which is essential for the large number
of fluid simulations required.

In the context of this model, an LMA’s location
is fully defined by the two arterioles it connects, char-
acterized by three parameters: vascular region, cor-
tical branch, and bifurcation depth. To incorporate an
LMA, a new node representing its connection point
is added between the cortical branch bifurcation and
the distal end of its arteriole tree. The arteriole tree’s
resistance is split into upstream and downstream por-
tions, ensuring efficient flow traversal while main-
taining computational efficiency.

Figure [2] presents a schematic representation
of a vascular tree, illustrating the node placements
for LMA connections. Nodes represent bifurcation
points, and edges correspond to blood vessel seg-
ments. Arrows indicates the direction of blood flow
from inlet to outlet. Red dashed lines depict LMA
connections to another vascular region.
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Figure 2. Schematic representation of a vascular
tree
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2.3. Fluid simulation

Blood flow in this study is simulated using a 0D
haemodynamic model based on steady-state flow as-
sumptions, where vessel segments are treated as res-
istive elements. Blood is modeled as an incompress-
ible Newtonian fluid with a viscosity of 4.7 mPa-s.

The vascular network consists of six primary in-
let nodes, corresponding to arterial branches from
the CoW, and multiple outlet nodes representing cor-
tical branch terminations. Flow rate boundary con-
ditions are imposed at the inlet nodes, derived from
patient-specific 4D Flow MRI data. At the out-
let nodes, a fixed pressure value of 50 mmHg is
assigned, which approximates typical pial arteriole
pressures (~ 50 um in diameter). Although physiolo-
gical variability exists in outlet pressures, this fixed
value serves as a practical approximation. Future
iterations of the model could incorporate a venous
compartment to dynamically compute outlet pres-
sures, eliminating the need for fixed boundary con-
ditions.

Pressure distribution within the vascular network
is computed using a conductance-based approach,
where each vessel segment is characterized by the
inverse of its resistance. The pressure at each node
is determined by solving the conservation of mo-
mentum equation, Eq. @):

Gii(pi — pj) = Qijs “4)
where G;; represents the conductance between
nodes i and j, p; and p; denote the pressure at nodes
i and j, respectively, and Q;; represents the flow rate
between the two nodes.
To satisfy mass conservation, the sum of all in-
coming and outgoing flows at each internal node
must be zero. Mathematically, this is presented as

Eq. @).

210ij=0, Vi€ N, )

J

where N, denotes the set of all internal nodes,
excluding inlets and outlets.

Boundary conditions are imposed such that a
prescribed net inflow Q; # 0 is applied at inlet nodes,
while outlet nodes have fixed pressure values. This
formulation results in a sparse linear system for the
unknown nodal pressures. To efficiently solve this
system, the model employs the Compressed Sparse
Column (CSC) format, which minimizes memory us-
age and computational cost. A direct solver optim-
ized for sparse matrices is used, ensuring stability
and efficiency in handling large vascular networks.
Once the pressure field is computed, the flow rates
through each vessel segment are determined based
on Eq. @). The total distal flow rate for each vascu-
lar region is obtained by summing the contributions
from all outlet nodes within that region. The overall
computational framework allows for rapid analysis,

with the average runtime for solving the CSC system
and determining node pressures being approximately
0.02 seconds.

2.4. Obtaining patient-specific LMA con-
figuration

This section details the optimisation process to
identify the LMA configurations that replicate ob-
served flow redistribution in cerebral vasculature.
Given the measured 4D flow MRI flow rates at inlets,
the goal is to find the LMA configuration that pro-
duces regional distal flow rates that match the meas-
ured SPECT flow rates in each region. The distal
flow rate Qcom, for each vascular region 4 is determ-
ined by summing the flow rates at all outlet nodes
within that region.

Given the discrete nature of the problem, where
LMA placement is represented by a set of dis-
crete decisions rather than continuous parameters,
the problem is classified as a discrete combinatorial
optimisation problem. The search space grows ex-
ponentially with the number of candidate locations,
making an exhaustive search computationally infeas-
ible. Therefore, an iGA was chosen to perform the
optimisation. LMA configuration, encoded as a set
of potential LMA locations, serves as the decision
variable. Meanwhile, the cost function J, shown in
Eq.[6] is defined as the RMS error between computed
and observed flow rates.

| &
J = I Z(Qco,h — Ospn)? 6)
=)

The constraints on formation of solution are as
follows: (1) Only inter-vascular-region LMAs are
considered, with connections defined based on pre-
vious studies. These include connections from the
ACA to MCA superior trunk branches, PCA to MCA
inferior trunk branches, ACA to PCA across hemi-
spheres, and left ACA to right ACA. (2) The differ-
ence in radii at the connected arterioles is constrained
to a maximum of 0.1 mm. This ensures that the as-
sumption of arteriogenesis, by which LMAs form,
requires connections between similarly sized arteri-
oles. (3) Only arterioles that are at least three bi-
furcations downstream from the cortical branch are
considered for LMA connections. This reflects the
fact that LMAs most commonly form on the menin-
geal surface rather than within the cortical network.
(4) The maximum number of LMAs allowed in any
given configuration is set to 400, a value sufficiently
high for the cases tested. It should be noted that, in
practice, the number of LM As in optimized configur-
ations typically remains well below this upper bound.

Shear stress is a crucial factor in arteriogen-
esis, as the mechanical forces induced by blood flow
through vessels promote endothelial activation and
subsequent vessel remodelling [14]. In the context of
the optimisation, a shear stress constraint is imposed
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to prevent the formation of inefficient LMAs. The
fluid shear stress (FSS) for a blood vessel, assuming
Poiseuille flow and neglecting tortuosity, is given by

Eq.[7}

4
= “_3Q (7
r

The FSS constraint enforces that each LMA
must maintain a minimum shear stress value for the
connection to be valid in the solution. The minimum
FSS limit is set at 2.5 Pascals, referencing the lower
end of the range measured in [[15]].

The inherent uncertainty in SPECT measure-
ments is assumed conservatively to be 10% [6].
Given this assumption, a solution is considered satis-
factory if the residuals for each vascular region—i.e.,
the difference between the SPECT-derived and com-
puted distal flow rates in the region—falls within
10% of the scaled SPECT flow rate. This ensures
that the maximum discrepancy between the two val-
ues remains within the uncertainty range, effectively
allowing the computed flow rate to be considered a
match to the SPECT flow rate once it falls within this
threshold. Mathematically, this can be expressed as

Eq.[8

|Oco.n — Qspun| < 0.05 - Ospi.
Vhe{l,2.....H ()

At the start of the optimisation process, a set of 6
vascular tree models is chosen from a pre-generated
pool of models. A population is initialised through
random generation of valid solutions. To enhance
the diversity of the search space and avoid prema-
ture convergence, the population is divided into mul-
tiple subpopulations, or "islands," that evolve inde-
pendently. Regular migration between islands en-
sures the exchange of promising solutions. Once the
initial population is set, each solution is evaluated by
adding the encoded LMAs to the vasculature and per-
forming fluid simulations. The cost of each solution
is determined by comparing the computed distal flow
rates with the target flow rates from SPECT data.

In the next phase, the rank-based exponential se-
lection algorithm is applied to promote solutions with
lower costs. Solutions are ranked based on their cost,
and the probability of selection for reproduction is
higher for solutions with better performance. After
selection, crossover, mutation, and solution length
adjustment operations are applied to generate new
solutions for the next generation. Crossover involves
combining parts of two parent solutions, while muta-
tion introduces small random changes to the solu-
tions. Length adjustment modifies the number of
LMAs in a solution to explore different regions of
the solution space. Solutions of the next generation
is then evaluated, and the iterative process contin-
ues until a satisfactory solution is found, or when
the maximum number of allowed generations has

elapsed, at which point no successful LMA config-
uration is found for the set of vascular tree models.
The models will be returned to the selection pool to
be selected again.

3. RESULTS

Two patient cases are examined to illustrate the
model’s practical application: CEA12, a 68-year-
old male with bilateral ICA stenosis (63% left, 65%
right), and CEA13, a 72-year-old male with severe
right ICA stenosis (91%). For each case, 2,000 vas-
cular tree models were generated per vascular region,
and 250 optimized peripheral vasculature-LMA con-
figuration pairs were collected using a stochastic se-
lection methodology. The time required to obtain one
optimized LMA configuration varied, with CEA13
taking 257.93 + 106.53 seconds and CEA12 taking
169.87 + 118.20 seconds, both of which are accept-
able in the scope of this study.

vvvvv
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2 2
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Figure 3. Representative model for case CEA12.
Flow direction is indicated by blue arrows, and
nodal pressure is visualized using in greyscale.

Figure [3]and [] present schematic graph plots for
cases CEA12 and CEA13, with one peripheral vas-
culature model from each case selected as a repres-
entative sample. In CEA13, due to stenosis on the
right-hand side, the pressure in the left hemisphere
is elevated compared to the right. LMAs are high-
lighted in red, with line thickness representing con-
ductance of LMA. In CEA13, a greater number of
high-conductance LMAs are observed between the
left and right anterior cerebral arteries (ACA), re-
flecting an increased reliance on inter-hemispheric
collateral flow. This recruitment of LMAs is driven
by the pressure gradient across hemispheres, created
by the single-sided stenosis in case CEA13. The
pressure in the right PCA of case CEAI13 is also
higher, reflecting the reliance on perfusion via the
healthy BA instead of the stenosed right ICA.
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Figure 4. Representative model for case CEA13,
in the same format as that for case CEA12.

+
LN

LACA LACA LACA LMCA RACA RACA RMCA
RACA LMCA LPCA LPCA RMCA RPCA RPCA

LMA Flow Rate (ml/s)

Figure 5. Redistribution of flow rates through
each collateral pathway for case CEA12

$Y‘¢*

LACA LACA LACA LMCA RACA RACA RMCA
RACA LMCA LPCA LPCA RMCA RPCA RPCA

60

LMA Flow Rate (ml/s)
N N iy
o o o o

IS
o

Figure 6. Redistribution of flow rates through
each collateral pathway for case CEA13

Figure [5] and [f] present violin plots illustrating
the redistribution of flow rates through each collat-

eral pathway, with its pattern differing between cases.
Flow rates positioned below zero indicate redistri-
bution from the second vascular region in the label
to the first, whereas positive values indicate flow in
the opposite direction. In CEA13, inter-hemispheric
flow accounts for 11.5% of the total cerebral blood
flow, whereas in CEA12, it is significantly lower at
0.23%. Significant flow from right PCA to right
MCA aligns with expectation of collateral flow from
posterior to anterior circulation. The observed range
of redistribution is a result of variations in the vas-
cular tree structure, which alter the relative pressure
distribution between regions, in turn leading to dif-
ferences in LMA recruitment and adaptation. Not-
ably, changes in the vascular structure do not result in
unrealistic or excessive variability in flow redistribu-
tion patterns. The distribution remains unimodal, as
confirmed by Hartigan’s Dip Test, indicating a stable
adaptation mechanism despite differences in vascular
topology.
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Figure 7. Flow rate vs. radius of LMA, CEA13

Figure [7] presents a flow rate versus radius plot
for CEA13, illustrating the redistributed flow rate of
each individual LMA across 250 optimized configur-
ations as a function of its respective radius. Each dot
represents a single LMA, with the colour scale in-
dicating the associated collateral pathway. The fan-
shaped void near the y = 0 line suggests that FSS
constraint is functioning as intended, as LMAs with
a high radius but low flow rate are correctly sup-
pressed, with larger radius leading to higher flow
rates in general. This confirms that the fluid simu-
lation operates as expected.

Figure [§] presents a plot of pressure difference
versus radius for CEA13, illustrating the pressure
difference between the two arterioles connected by
each LMA, plotted against their respective radii
across all 250 optimized configurations. The results
reveal a trade-off between radius and pressure dif-
ference. Due to the physiologically-based constraint
that the radius difference between the two arterioles
connected by an LMA must remain under 0.1 mm,
LMAs with larger radii typically form between ar-
teries at lower bifurcation depths, which are located
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Figure 8. Pressure difference across LMA vs.
their respective radii, CEA13

more proximally in the vascular tree. As pressure
dissipates downstream, arteries at similar depths ex-
hibit smaller pressure differences compared to arter-
ies at significantly different depths, where the up-
stream end has a much higher pressure relative to the
downstream end. In such cases where the pressure
difference is favourable for more efficient redistribu-
tion, the smaller radius of the downstream arteriole
limits the LMA’s overall radius.

While the maximum pressure difference occurs
around a radius of 0.2 mm, the maximum flow
rate continues to increase with radius, despite lower
pressure differences. This behaviour aligns with
Poiseuille’s equation, which states that flow rate is
proportional to the pressure difference but inversely
scales with the cube of the radius. Consequently, ra-
dius exerts a dominant influence over flow rate, rein-
forcing that the model accurately reflects the expec-
ted behaviour of LMAs from a fluid dynamics per-
spective.

Finally, it is important to note that the mean
LMA radius for each case was found to be 0.212 +
0.0927 mm for CEA13 and 0.169 + 0.0857 mm for
CEA12. These values are consistent with existing lit-
erature, with CEA12 showing a smaller LMA radius
compared to CEA13. This difference is likely due
to CEA12 needing to prioritize the pressure differ-
ence across LM As by connecting upstream arterioles
to downstream ones. Since the inherent pressure dif-
ference between vascular regions—and between ar-
terioles at the upstream end of the cortical branch
trees—is relatively small, CEA12 compensates by
relying on the pressure difference generated by the
depth disparity between these arteries.

4. DISCUSSION

This study employs a 0D model due to its suit-
ability for capturing global flow distribution in a sim-
plified and computationally efficient manner. The de-
cision to explicitly compute the radius of each blood
vessel segment, and directly derive resistance from

anatomical parameters, eliminates the need for em-
pirical tuning. This approach makes the model ideal
for steady-state analysis of systemic haemodynam-
ics, as outlined by Shi et al. [5]. It also retains flexib-
ility and simplicity when modelling arterial flow re-
distribution.

One limitation of this study is the lack of
capillary-level analysis, which is essential for un-
derstanding microvascular perfusion. Additionally,
the model is relatively coarse, considering only six
vascular regions, which introduces significant uncer-
tainty in the redistribution of flow values. The study,
however, lays the foundation for future research that
will incorporate larger datasets and finer perfusion
partitioning at the cortical region level. This would
be particularly beneficial given the rapid advance-
ments in imaging techniques that are less invasive,
more affordable, and increasingly applicable in clin-
ical settings [16]. The increased precision in these
imaging techniques would reduce uncertainty in flow
redistribution calculations. As more regions are con-
sidered, the model would be required to satisfy more
complex redistribution conditions. While this adds
difficulty, it ultimately leads to more precise and re-
fined insights into haemodynamic behaviour.

Here, the model’s scalability should be noted, as
it can easily adapt to perfusion data of different preci-
sion levels by adjusting the partitioning of regions of
interest. Currently, the model is based on just six vas-
cular regions, but it can be extended down to the level
of individual cortical branches. This flexibility will
allow for the integration of more detailed pial per-
fusion data, which will contribute to advancing the
understanding of local blood flow dynamics. Ulti-
mately, this will enable the development of more ac-
curate, patient-specific predictive models for stroke
management.

Validation of both vasculature structure and
LMA topology remains a challenging task. It is
hoped that future advancements in imaging tech-
niques will provide more quantitative data for valid-
ation, allowing for more robust assessments of the
model’s accuracy. The study is currently advan-
cing in the direction of performing comparative ana-
lyses with a broader range of patient cases. This
work aims to deepen the understanding of the rela-
tionship between variations in both LMA topology
and overall vasculature network structure, particu-
larly in response to changes in pressure environ-
ments, physiological conditions, and distal perfusion
demands.

5. CONCLUSION

A 0D modelling framework that integrates syn-
thetic vascular network generation with flow rate
measurements to enhance the assessment of cerebral
collateral circulation was introduced. This approach
enables patient-specific simulations without requir-
ing detailed vascular segmentation whilst taking in
account peripheral collateral network, addressing

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors



key limitations in traditional peripheral vasculature
models, thus representing a step toward bridging the
gap between imaging-based assessments and predict-
ive haemodynamic modelling, offering a practical
approach for investigating cerebrovascular haemody-
namics in both research and clinical settings. Fu-
ture work will focus on validating LMA topology
and model performance, increasing model granular-
ity, and expanding the analysis to a broader range of
patient cases.
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