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ABSTRACT
Parametric resonance is a dynamic instability

that causes exponential growth in the amplitude of
an oscillating system. This study presents a nonlin-
ear Mathieu-type equation model for floating bod-
ies excited by waves, developed to capture para-
metric resonance in both the heave and pitch de-
grees of freedom. The model includes nonlinear hy-
drostatic restoring forces and incorporates position-
dependency of the wave excitation forces. Through a
nondimensional analysis, a previous model is simpli-
fied. A non-cylindrical axisymmetric spar-buoy was
used as a test case. The wave excitation forces were
calculated for various heave and pitch positions, and
interpolated with a third-order polynomial. Simula-
tions showed parametric resonance when the wave
frequency is twice the natural frequency of the struc-
ture. The results compared favourably to those from
a benchmark model with nonlinear Froude-Krylov
forces, but achieving a 1000-fold speed increase.
On top of this increased computational efficiency,
the presented model facilitates analytical approaches,
such as perturbation analysis or harmonic balance.

Keywords: Mathieu equation, nonlinear hydro-
dynamic modelling, parametric resonance, spar
buoy, wave-structure interaction

NOMENCLATURE
Fhr [N] hydrostatic restoring force
H [m] wave amplitude
I [Nm] inertia moment
Ia [Nm] added inertia
Mhr [Nm] hydrostatic restoring mo-

mentum
R [m] buoy radius
T [s] time scale
V [m3] submerged volume
Z [m] length scale for the heave
g [m/s2] gravitational acceleration
ai, j [−] nondimensional coefficient for

force amplitude

bi, j [−] nondimensional coefficient for
moment amplitude

ca [kg] radiation damping
cg [m] center of gravity
di, j [−] nondimensional coefficient for

heave phase
fe [N] excitation force amplitude
fi, j [−] nondimensional coefficient for

pitch phase
h0 [m] height of the truncated cone
h1 [m] height of the cylinder
m [kg] mass of the floating body
ma [kg] added mass
me [Nm] excitation moment amplitude
xcb [m] center of buoyancy horizontal

position
xcg [m] center of gravity horizontal

position
z [m] heave position
α [m] buoy angle
η [m] wave elevation
ω [rad/s] wave frequency
ω0 [rad/s] natural frequency
Φ [rad] length scale for the pitch
ρ [kg3] water density
θe [rad] phase angle
φ [rad] pitch position
ζ [m] buoy height position

1. INTRODUCTION
Parametric resonance is a dynamic instability

that causes exponential growth in the amplitude of an
oscillating system. It occurs in differential equations
with time-varying coefficients [1]. The most well-
known example of such equations is the Mathieu
equation, a second-order ordinary differential equa-
tion (ODE) with no external forcing and a harmonic-
ally time-varying parameter.

Various phenomena, such as the oscillations of
floating vessels [2] are described by the Mathieu
equation or variants of it [3]. A floating body excited
by waves is often described by a Mathieu equation,
with an external excitation and damping added. The
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time-varying parameter, normally represents a part of
the hydrostatic stiffness, and leads to heave-to-pitch
instability.

Heave-to-heave instabilities on the other hand,
caused by a non constant cross-sectional area in the
body, are rarely found in the literature. This type of
instability was studied numerically by Jang and Kim
in [4] for the case of an Arctic Spar. Lelkes et al.
in [5] developed an analytical model to capture the
heave-to-heave parametric instability. In the model-
ling presented in [5], the occurrence of parametric
resonance in the heave was not induced by the non-
linear hydrostatic stiffness term, but rather derived
from the wave excitation force being dependent on
the heave position. This dependency was obtained
through the interpolation of the wave excitation force
calculated at various positions. Even though posi-
tional dependence of hydrodynamic forces was also
considered by Rodriguez and Neves in [6], the ap-
proach was different: in [6] a Taylor series expan-
sion was applied to a simplified approximation of the
force near the equilibrium point. In [7], the model
developed in [5] was expanded to also include the
pitch. In this paper, an evaluation of the significance
of the parameters by a nondimensionalization will
be made in the model presented in [7], and simpli-
fications will be made in the interpolations, making
the model simper and faster. A model with nonlinear
Froude-Krylov forces [8] will be used as the bench-
mark.

2. ANALYTICAL MODEL FOR PARA-
METRIC RESONANCE

In this Section the same procedure that was used
in [5] and [7] to model the movement of a spar-buoy
excited by harmonic waves will be applied.

In Figure 1, a floating body is shown along with
the world coordinate system i j. The origin of this
system is horizontally aligned with the body’s center
of gravity (cg) and vertically at the still water level
(SWL), which represents the water surface elevation
without wave effects. The motion of the body is con-
strained to the heave DoF z, i.e vertical motion in the
j axis, and the pitch DoF φ, i.e rotation around the
cg. The wave elevation η is measured relative to the
SWL. By convention, the wave propagation direction
follows the direction of the i axis.

Only harmonic wave elevations, defined as

η(t) = H · cos(ωt), (1)

where H is the wave amplitude and ω is the wave
frequency, are considered.

The model proposed by Lelkes et al. and presen-
ted in [5] is

(m + ma(ω)) z̈ + ca(ω)ż + Fhr(z)
= fe(z, ω)H cos(ωt − θe(z, ω)).

(2)

where m is the mass of the floating body, ma is the
added mass, ca is the radiation damping, Fhr is the
hydrostatic restoring force, fe and θe are the wave

j

cg

η(t) SWL

i

Figure 1. Floating body, wave elevation, and the
world coordinate system for two DoFs

excitation amplitude coefficient and the phase angle.
By expanding Eq. (2) to also include include the
pitch degree of freedom, the following coupled sys-
tem presented in [7] is obtained

(m + ma(ω)) z̈ + ma2(ω)φ̈ + ca(ω)ż + ca3(ω)φ̇
+ Fhr(z, φ) = fe(z, φ, ω)H cos(ωt − θe(z, φ, ω)),

(3)

(I + Ia(ω)) φ̈ + Ia2(ω)z̈ + ca2(ω)φ̇ + ca4(ω)ż
+ Mhr(z, φ) = me(z, φ, ω)H cos(ωt − θe2(z, φ, ω)),

(4)

where I is the rotational inertia, Ia is the added ro-
tational inertia, Mhr is the hydrostatic restoring mo-
ment, and me is the wave excitation amplitude mo-
ment coefficient.

3. CASE STUDY
In this Section, a test case is presented to eval-

uate the performance of the parametric excitation
model (Eqs. 3 and 4). The test case is generic, not
containing a mooring system, as the primary focus of
the model is the wave excitation force. Additionally,
conditions of infinite water depth are considered.

3.1. The floating body

The floating body considered in the test case is
an axisymmetric spar-buoy, similar to the one ex-
amined in [5] and [7]. It consists of a truncated cone
and a cylindrical extension, as illustrated in Figure 2.
The exact shape of the spar-buoy is defined by:

f (ζ) =


R1 if − h0

2 + h1 ≤ ζ ≤
h0
2 ,

R0 + ζ tan(α) if − h0
2 ≤ ζ ≤

h0
2 ,

0 otherwise.
(5)

The physical parameters of the spar-buoy shown
in Fig. 2 and their corresponding values are α =
0.197 [rad], R0 = 3 [m], h0 = 10 [m], h1 = 15
[m], R1 = 2 [m], zcg = 16 [m], m = 2.95 · 105 [kg],
and I = 1.18 · 107 [kg · m2]. The water density is
ρ = 1025 [kg/m3] and the gravitational acceleration
is g = 9.806 [m/s2].
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Figure 2. Section of the spar-buoy geometry

3.2. Modelling the test case
With g and ρ given in Subsection 3.1, the hy-

drostatic restoring terms Fhr and Mhr are calculated
based on the body geometry with

Fhr(z, φ) = ρwaterg∆V(z, φ), (6)

where∆V(z) = V(z)−V(0), V(z) being the submerged
volume, and

Mhr(z, φ) = ρg∆V(z, φ) · (xcb(z, φ) − xcg), (7)

where xcb is the horizontal position of the center of
buoyancy, and xcg is the horizontal position of the
center of gravity.

In this case Fhr(z, φ) and Mhr(z, φ) are calculated
numerically with the CAD software FreeCAD [9].
The values for Fhr and Mhr are determined for a set
of discrete pitch angles ranging from −0.21 [rad] to
0.21 [rad], with a step size of 0.07 [rad], and for
heave displacements from −4 [m] to 4 [m], with a
step size of 1 [m].

An interpolation is then performed on the gen-
erated dataset to describe Fhr and Mhr continuously,
employing polynomial functions of the heave z and
pitch φ displacement. The resulting polynomial ex-
pressions are

Fhr(z, φ) = ρg∆V(z, φ) ≈
∑

1≤i+ j≤3

ri, jziφ j, (8)

Mhr(z, φ) = ρg∆V(z, φ)(xcb(z, φ) − xcg)

≈
∑

1≤i+ j≤3

si, jziφ j, (9)

where ri, j are the hydrostatic restoring coefficients for
the heave obtained from the polynomial interpola-
tion, and si, j are the hydrostatic restoring coefficients
for the pitch obtained from the polynomial interpol-
ation.

The calculation of the wave excitation coeffi-
cients fe, me, θe, and θe2 is done with the open-source
boundary element solver NEMOH [10], which com-

putes first-order hydrodynamic coefficients, such as
added mass, radiation and excitation forces in the fre-
quency domain.

A model with nonlinear Froude-Krylov forces
that does not consider the diffraction force [8] will
be used as the benchmark, so this component will
also be neglected in the present study. This approach
is common for bodies that are small relative to the
wavelength [11], and it can be easily configured with
NEMOH.

In this test case, the wave excitation coefficients
are computed for the same discrete displacements
used in the hydrostatic restoring terms. The wave ex-
citation terms are also interpolated with polynomial
functions, yielding the following expressions

fe =
∑

0≤i+ j≤3

ai, j(ω)ziφ j, θe =
∑

0≤i+ j≤1

di, j(ω)ziφ j,

(10)

me =
∑

0≤i+ j≤3

bi, j(ω)ziφ j, θe2 =
∑

0≤i+ j≤2

fi, j(ω)ziφ j

(11)

where ai, j, di, j, bi, j, and fi, j are the coefficients ob-
tained from the polynomial interpolation.

The radiation and added mass coefficients ma,
ma2, Ia, Ia2, ca, ca2, ca3 and ca4, in Eqs. (3) and (4),
are also computed using NEMOH.

The cross terms ma2(ω), ca3(ω), Ia2(ω) and
ca4(ω), calculated for NEMOH were negligible, be-
ing over four orders of magnitude smaller than the
other coefficients. This outcome is expected for an
axisymmetric body, so they were neglected from the
model in this test case.

The radiation damping coefficients depend on
the frequency of the body motion. In a linear model,
a body oscillates at the same frequency as the excita-
tion. In a nonlinear model, such as the parametric ex-
citation model, this is not always the case. However,
in the present test case, following Lelkes et al. in [5],
the radiation damping considered will be with the ex-
citation frequency. Even though this simplification
introduces error, the wave excitation forces, which
are the primary focus of the model, are not affected.
Simplifications of this kind are not uncommon in lit-
erature, as seen in works such as [12, 13, 14], where
the radiation damping was similarly simplified to fo-
cus on other specific aspects of the analysis.

4. NONDIMENSIONALIZATION
In order to better understand the significance of

the parameters in the model, and remove terms that
do not alter the results, the 2-DoF model is nondi-
mensionalized. The nondimensional variables are
defined as follows

t̃ =
t
T

, z̃ =
z
Z

, φ̃ =
φ

Φ
. (12)
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The length and angle scales Z and Φ are defined so
that z̃ and φ̃ have a validity region between −1 and
1. As the validity region of the model is defined as
|z| ≤ 4 [m] and |φ| ≤ 0.21 [rad] (as stated in Section
3),

Z = 4 [m], Φ = 0.21 [rad]. (13)

The time scale T is defined as

T =

√
m + ma(ω)

r1,0
. (14)

The nondimensional equations become

¨̃z + α3(ω)˙̃z +
∑

1≤i+ j≤3

γi, j(ω)z̃iφ̃ j

= cos

νt̃ − ∑
0≤i+ j≤1

ξi, j(ω)z̃iφ̃ j

 ∑
0≤i+ j≤3

βi, j(ω)z̃iφ̃ j,

(15)

¨̃φ + α5(ω) ˙̃φ +
∑

1≤i+ j≤3

ζi, j(ω)z̃iφ̃ j

= cos

νt̃ − ∑
0≤i+ j≤2

χi, j(ω)z̃iφ̃ j

 ∑
0≤i+ j≤3

µi, j(ω)z̃iφ̃ j,

(16)

where the nondimensional parameters are

α3(ω) =
c3√

(m + ma(ω))r1,0
,

α5(ω) =
c5
√

m + ma(ω)
(I + Ia(ω))

√
r1,0

,

γi, j(ω) =
1

r1,0
ri, jZi−1Φi, βi, j(ω) =

H
r1,0

ai, jZi−1Φi,

ζi, j(ω) =
T 2

I + Ia(ω)
si, jZiΦi−1,

µi, j(ω) =
HT 2

I + Ia(ω)
bi, jZiΦi−1,

ν(ω) = ω

√
m + ma(ω)

r1,0
,

ξi, j = di, jZiΦ j, χi, j = fi, jZiΦ j.

(17)

The restoring parameters are now functions ofω.
To estimate their orders of magnitude, their values
for ω = 1.9 [rad/s] are provided in Eq. 18 and Table
1

α3 = 0.03, α5 = 0.83, ν = 2. (18)

The nondimensional coefficients γi, j and ζi, j cor-
respond to the hydrostatic restoring coefficients ri, j
and si, j. The coefficients βi, j, µi, j, ξi, j and χi, j relate to
the wave excitation coefficients ai, j, bi, j, di, j and fi, j,
while α3 and α5 correspond to the radiation damping
terms c3 and c5.

i,j 0, 0 1, 0 2, 0 3, 0 1, 0
γi, j 0 0.21 −0.012 2.26 · 10−4 4.67 · 10−6

ζi, j 0 −4.42 · 10−9 −2.41 · 10−9 1.8 · 10−10 3.61
βi, j 0.051 −0.02 −0.01 −0.002 7.93 · 10−6

µi, j 0.01 −0.004 −0.002 −3.84 · 10−4 1.56 · 10−6

ξi, j 2.6 · 10−5 7.06 · 10−4 0 0 1.84
χi, j −1.57 9.16 · 10−5 −1.56 · 10−4 0 1.05
i,j 0, 2 0, 3 1, 1 2, 1 1, 2
γi, j −2.28 1.08 · 10−5 −8.43 · 10−7 4.63 · 10−8 0.36
ζi, j −8.76 · 10−6 7.65 −0.77 0.061 2.21 · 10−6

βi, j 0.017 −8.54 · 10−6 6.66 · 10−6 −1.23 · 10−5 −0.001
µi, j 0.003 −1.68 · 10−6 1.31 · 10−6 −2.43 · 10−6 −2.38 · 10−4

ξi, j 0 0 0 0 0
χi, j −1.49 · 10−4 0 −0.34 0 0

Table 1. Nondimensional polynomial approxim-
ation coefficients for hydrostatic restoring terms
(γi, j and ζi, j), and wave excitation terms (βi, j and
µi, j)

The nondimensional coefficients γ0,1, γ1,1, γ2,1,
ζ1,0, ζ2,0, ζ3,0, ζ0,2, and ζ1,2 in Table 1 have small
values. So a polynomial interpolation for the hy-
drostatic restoring forces was conducted by setting
the coefficients corresponding to these small-valued
nondimensional coefficients to zero. The threshold
for a coefficient to be deemed small was chosen as
2.26 · 10−4. This choice was made because it was ob-
served that the term γ3,0 was the smallest coefficient
that still significantly affected the interpolation.

With these small terms set to zero, we recalculate
the dimensional parameters ri, j and si, j in this simpli-
fied manner. The results are shown in Table 2.

i,j 1, 0 2, 0 3, 0 0, 1
ri, j (SI) 2.83 · 105 −1.93 · 104 434 0
si, j (SI) 0 0 0 −2.08 · 107

i,j 0, 2 0, 3 1, 1 2, 1
ri, j (SI) −2.59 · 106 0 0 0
si, j (SI) 0 −4.42 · 107 5.29 · 107 −4.97 · 105

i,j 1, 2
ri, j (SI) 4.92 · 105

si, j (SI) 0

Table 2. Hydrostatic restoring coefficients ob-
tained from the polynomial interpolation that set
small terms to zero

By comparing the results of the interpolation
with the values from Table 2 to the one with the ori-
ginal ones, the difference between the two interpola-
tions across the considered range of |z| ≤ 4 [m] and
|φ| ≤ 0.21 [rad] was never bigger than 10−10. This is
negligible, considering that ¯|Fhr | = 5.9 · 105 [N] and

¯|Mhr | = 2.57 · 106 [Nm].
The same procedure was applied to the wave ex-

citation coefficients and led to the values in Table 3.

5. RESULTS
In this Section, the results from the test case de-

tailed in Section 3 with the simplifications from Sec-
tion 4 are presented and compared to a model with
NLFK forces.

The equations for the presented model Eqs. (3)
and (4) are solved numerically using the NDSolve
function in Wolfram Mathematica 14.1 with its de-
fault settings, and the equations for the model with
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i,j 0, 0 1, 0 2, 0 3, 0
ai, j (SI) 5.89 · 104 −5897 −722 −34.2
bi, j (SI) 2.61 · 106 −519 · 105 3.23 · 104 1322
i,j 0, 2 1, 2
ai, j (SI) 4.27 · 105 −7481
bi, j (SI) 5.84 · 106 6.15 · 105

i,j 0, 0 0, 1 1, 1
di, j (SI) −2.54 · 10−5 8.7 0
fi, j (SI) −1.57 4.94 −0.41

Table 3. Wave excitation coefficients obtained
from the polynomial interpolation that set small
terms to zero

NLFK forces, were solved in Matlab R2021a, using
the toolbox developed by Giorgi et al. in [8].

The natural frequency ω0 is also found numer-
ically, by running a simulation without the external
excitation. It is critical to note that the validity re-
gion of this parametric excitation model is limited
to the range over which the excitation and restoring
force coefficients were computed, |z| ≤ 4 [m], and
|φ| ≤ 0.21 [rad].

By numerically solving Eqs. (3) and (4) with
these simplified interpolations and comparing to their
solution with the initial interpolation, the difference
was of the order of 10−4. However, with the simpli-
fied interpolations, the running time to obtain the in-
terpolation and perform a simulation of 1000 periods
went from 1.94 seconds to 0.27 seconds . So neglect-
ing the small terms does not affect the results signific-
antly, while making the code run faster. As for each
simulated frequency, a new interpolation for the wave
excitation coefficients is necessary, when evaluating
multiple frequencies, the difference in time becomes
more significant.

The plots in Figures 3 and 4 show the oscilla-
tion amplitude in response to a range of input wave
frequencies and amplitudes. The RMS of the dis-
placement time series, scaled by the square root of
2 serves as the measure of amplitude for both heave
and pitch motions. This RMS is computed over the
last 64 wave periods of the simulation to ensure that
motions have reached steady-state.

In Fig. 3 these are shown for the region where
heave parametric resonance occurs, while in Fig. 4
for the region where the pitch parametric resonance
occurs. At a first view, the contour plots indicate a
good match between the models.

In Figures 5 and 6, the time series for Point C in
Fig. 3 and Point D in Fig. 4 are plotted. For the para-
metric excitation model, the amplitude grows faster
and larger than for the model with NLFK forces, with
a difference of around 20% in the amplitudes. The
results also appear slightly off-phase. These differ-
ences were also noted for the 1-DoF results in [5].
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(a) RMS amplitudes for heave from the
parametric excitation force model
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(b) RMS amplitudes for heave from the
model with NLFK forces

Figure 3. Contour plots of steady-state amp-
litudes of the buoy’s oscillations in the heave para-
metric resonance region
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Figure 4. Contour plots of steady-state amp-
litudes of the buoy’s oscillations in the pitch para-
metric resonance region
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(b) Steady state heave oscillations

Figure 5. Comparison of time series between the
parametric excitation model and the model with
NLFK forces for the input wave conditions at
Point C in Fig. 3: ω

ω0heave
= 2.02 and H = 1.3 [m]

(a) Transient pitch oscillations
NLFK model

Parametric Excitation model
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(b) Steady state pitch oscillations

Figure 6. Comparison of time series between the
parametric excitation model and the model with
NLFK forces for the input wave conditions at
Point D in Fig. 4: ω

ω0pitch
= 2.14 and H = 1.4 [m]

6. CONCLUSION
In this study, a nondimensional analysis was ap-

plied to a previously presented model for a floating
body that was able to capture parametric resonance,
while being computationally efficient. This model-
ling approach, with an interpolated parametric ex-
citation is much more computationally efficient than
models where the excitation forces are calculated by
numerical integration at each step.

By nondimensionalising the system of equa-
tions, it was possible to have a better understanding
on the significance of the parameters of the model. It
was observed that some parameters were negligible,
which allowed for the model to be simplified by neg-
lecting them in the interpolation. This simplification
did not alter the results, but made the model run much
faster.

One important consideration for further studies
is that the models presented in this article, calculate
the radiation forces as linearly proportional to the
body velocity, with the radiation force coefficient de-
rived considering that the body oscillates at the same
frequency as the waves. This is a common approach
used for single-frequency waves, which is a sim-
plification of the more general convolution integral
required in multi-frequency wave spectra [15] [16].
However, as explained in Section 5, in the regions
where the parametric resonance occurs, the body os-
cillates at half of the wave frequency, thus the applied
radiation coefficient considers the wrong oscillation
frequency. This is something that shall be corrected
in an extension of the model to work with polychro-
matic waves, as the complete convolution integral for
the radiation forces must be used for that case.
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