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ABSTRACT

We construct a chain oscillator whose block
masses are connected by linear springs and linear
dampers and each block is capable of 2D movement.
This capability for moving in two directions gives
rise to geometric nonlinearity in both the spring and
the damping forces.

We investigate the behaviour of the planar sys-
tem for initial conditions resulting in both linear and
nonlinear response. The oscillator chain will be sub-
jected to simultaneous forcing of each of its block
masses, whose results will be compared for different
forcing magnitude and parametrisations of the sys-
tem.

The mean positions of the planar oscillator’s
block masses are compared to the velocity fields
arising in simple fluid flows in pipes. It is demon-
strated that for certain parametrisations of the oscil-
lator, the model can reproduce the velocity profiles
of real pipe flows. In particular, the mean position
of the masses follows a quadratic profile for forcing
similar to the constant pressure gradient which facil-
itates Poiseuille flows.

Keywords: flow modelling, nonlinear dynamics,
pipe flow

NOMENCLATURE

E [-] energy

c [-] damping

fo [-] scaling parameter of the for-
cing

k [-] spring stiffness

/ [-] free spring length

m [-] element mass

n [-] number of elements

p [-] fitted polynomial

t [-] time

X [-] horizontal position

y [-] vertical position

R? [-] fit quality

Fq [—] damping force

1

F¢ [—] forcing

| [-] spring force

r [-] position vector
[-] scaling parameter

Subscripts and Superscripts

i,J indices
- temporal average
1.INTRODUCTION

The mechanistic turbulence (MT) model depic-
ted in Fig. [I] was first introduced as an attempt
to explain Richardson’s eddy hypothesis [1] with a
mechanical system. It consists of a binary tree of
masses connected by springs, with damping between
the blocks that constitute the two bottom levels.
For gradually decreasing block masses connected by
with linear springs it is able to exhibit an energy dis-
tribution across its scales, that is similar to the tur-
bulent energy spectrum [2] derived by Kolmogorov
[3] for 3D homogeneous isotropic turbulence. This
turbulent energy cascade is enabled by irreversible
transfer of energy from the largest scales of the tur-
bulent flow towards the smallest, dissipative scales.

By introducing cubic nonlinearity to the springs
connecting the last two levels of the binary tree (as
seen in Fig. [I)), the model was found to be capable
of efficient targeted energy transfer (TET) towards
the nonlinear, dissipative elements for both impuls-
ive and harmonic excitation of the top blocks which
have the largest masses [4]. This irreversible transfer
of energy results in efficient dissipation [3]], and has
been used for both vibration absorption [6}[7] and en-
ergy harvesting [8]]. Thus, the TET found in the non-
linear MT model produces an energy cascade from
the largest mass scales to the smallest mass scales,
where the energy is ultimately dissipated. This pro-
cess is chaotic for impulsive excitation of the largest
block masses. The model also has chaotic bands [4],
which are frequency regions where harmonic excita-
tion induces chaos in the system according to Chen
et al. [9].
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Figure 1. Mechanistic turbulence model with

n = 3 levels, and springs with cubic nonlinearity
between the last two levels

Despite its success in nonlinear dynamics, the
MT model so far had only limited applications in
modelling fluid mechanics. The aim of this paper
is to introduce a planar version of the MT model
that features geometric nonlinearity as shown in Fig.
2] We show that this planar oscillator is capable of
expressing certain features of simple fluid flows —
namely the velocity profile of a Poiseuille flow with
constant pressure gradient [10] — while being able to
exhibit nonlinear phenomena found in the MT model
as well.

2. MODEL DESCRIPTION

The planar oscillator shown in Fig. [2| consists of
a chain oscillator with n blocks connected by springs
and dampers with linear characteristics. A wall and
a symmetry boundary condition is applied at the bot-
tom and the top blocks, respectively. The m; masses,
¢; dampings, k; stiffnesses, and /; spring lengths fol-
low the relations

m; = o, i=1,....n

c¢; = 0.01, i=1,....,n+1

k=1, i=1,....n+1 M
L=o™" ji=1,...,n+1,

where o > 0 is a scaling parameter. Note that the
quantities introduced throughout this paper are taken
to be dimensionless, as it focuses on the qualitative
behaviour of the system. The power laws and the
light damping in Eq. (I) are introduced to obtain a
parametrisation in line with the MT model that is de-
scribed in [2, 4].

The elements of the chain oscillator are the block
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Figure 2. General form of the planar oscillator
with a wall and a symmetry boundary condition

masses. These are treated as point masses, i.e. they
have no rotational degrees of freedom. The equation
of motion determining the r; = (x;,y;) position of
elementi=1,...,n1is

mit; = Fyjin —Fai1i+Fsiio —Fsio1i + Fryy (2)

where Fy;; and F,;; are the damping and spring
forces acting on element i, defined as

oo o) ),

dij = )
=l 5
l;
FSJJ - [1 - “I‘j—l‘i”\’kl (I'] rl),
and Fy; is the forcing applied to element i. This

means that the damping force Fg;; and the spring
force F; ; act only along the line connecting the ele-
ments i and j.

Element i = 1 is connected to a wall, i.e., the bound-
ary condition

ro() = 0, 4)

is applied. At the other end of the chain oscillator a
symmetry boundary condition is applied to element
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n, resulting in
xn+l(t) = xn(t)’

S 5
Yt (0) =2 I+ by = yu(0). ©
i=1

This means that the position of the masses m, and
my are reflections of each other with respect to the
symmetric boundary.

The total energy of the system is defined as the
sum of the potential energy of the springs and the
kinetic energy of the blocks, i.e.,

n+l
k

zM—;Z;$BWMrmma>

1 n ] 2
+§;wmm,
where 6, is the Kronecker delta.

3. SIMULATION RESULTS

The equation of motion (2)) of the planar oscil-
lator was solved numerically with boundary condi-
tions ([@)-(3) for different values of the o~ scaling para-
meter introduced in Eq. (I). While the qualitative be-
haviour of the system is not sensitive for the partic-
ular value of o, different issues arise upon choosing
a too high or low value significantly increasing the
computational time. For high values (when o is close
to 1) the system requires a large number of blocks to
include a wide range of mass scales. For lower values
of the scaling parameter (oo < 0.5) simulating more
than n =~ 10 levels is computationally challenging,
because the proportion of the largest and the smal-
lest mass and length scales becomes large enough
that the simulation requires much finer time discret-
isation, leading to increased computational time.

(6)

3.1. Impulsive excitation

The planar oscillator is considered with n = 30
levels and o = 0.8, as this combination of parameters
was found to provide a sufficiently broad range of
mass scales in Eq. (I)) without adversely affecting
the computation accuracy and time.

The initial conditions providing the impulsive
excitation for the simulations are given by

r;(0) = ? Zz,, i=0,...,n,
L4 =1

r(0)=0, i=0,....,n—-1, @)

r,(0) = (1) or [(1)},

meaning that every element starts in equilibrium and
only element n has nonzero initial velocity. As this
section considers impulsive excitations, no forcing
was applied to the system, i.e.

Fe; =0, i=1,...,n (8)
As indicated in Eq. , two cases are considered

3

with the same initial velocity magnitude for element
n. In the first one, the initial velocity ¥,(0) has a zero
X component, i.e.,

m@=m. ©)

This results in linear behaviour, as the only source of
nonlinearity in the planar oscillator is the geometric
nonlinearity facilitated by movement in the x direc-
tion. The second case has a nonzero x component
and a zero y component, i.e.,

Mm{J

introducing nonlinear effects.

Interestingly, the linear case given by the initial
condition in Eq. (9) provides a stronger dissipation
of the total energy E(f) compared to the nonlinear
case given by Eq. (10), as seen in Fig. 3} This means
that the geometric nonlinearity did not facilitate the
efficient energy dissipation seen in some nonlinear
dynamical systems [5, 16} 7} [8]].

(10)
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Figure 3. Total energy over time with impulsive
excitation given by the initial conditions in Eqs.

@-([

3.2. Poiseuille flow

As a next step, the equation of motion of the
planar oscillator was solved with a forcing similar
to those driving Poiseuille flows [10]. The invest-
igations are carried out for three different values of
the scaling parameter o, which are shown in Tab. [1}
along with the number of blocks in the oscillator and
the chosen forcing parameters fj.

Table 1. Number of blocks in the oscillator for the
different values of the scaling parameter o

o n
05 10
0.8 30
09 30

Poiseuille flows arise as a result of a constant
pressure gradient [[10]. Assuming constant density
of the fluid, this results in a force acting on any fi-
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nite fluid element proportional to the fluid element’s
mass. Analogously to Poiseuille flows, the static
force applied to element i is defined here as

Ff,,-(z)z[foyi}, i=0,....n, (1)
where fj is the parameter determining the strength of
forcing. In this section, possible values of 0.01, 0.1,
and 1 are examined.

This time the initial conditions for the equation
of motion (2) were set as

ri(O)z[(l)]le, i=0,...,n,
j=1

1(0) =0,

which means that every spring is initially relaxed and
every element starts at rest.

The displacement solutions x(#), y(f) were calcu-
lated, then the total energy of the system was also
obtained using Eq. (6). The resulting time histor-
ies of the total energy E(r) are shown in Fig. [ for
some values of fj and o. In every examined case,
Fast Fourier Transform shows that the total energy
has harmonic behaviour, with the exception of the
case o = 0.5 and f; = 0.01, which has the smallest
energy content. In that case, additional modes are
present in the r,(¢) solution compared to every other
investigated case.

The oscillations of the total energy E(f) are
caused by the fact that the potential energy corres-
ponding to the Fy; static forces is not taken into ac-
count when calculating E(f) according to Eq. (6).

The horizontal displacements exhibit the same
qualitative behaviour as E(f). For instance, the ho-
rizontal displacement x,(7) of the block at the sym-
metry boundary is shown in Fig. [3]

12)

i=0,...,n,
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Figure 4. The total energy E(¢) of the system as
a function of time for some values of o, n, and f;
according to Tab. [T} forcing according to Eq. (TI),
and ICs given in Eq. (I2)

The vertical displacement y,(¢) of the block at
the symmetry boundary is shown in Fig. [6] for some

4

<
N
o
g
o v q VAN
(o}
s 10[ V V
-
<}
N
S
T
'I L L L
8000 8500 9000 9500 10000
Time, t
— 0=0.5, f,=0.1 — 0=0.8, fo=1 0=0.9, f,=0.1
— 0=0.8,=0.1 — 0=0.9, f,=0.01

Figure 5. The horizontal displacement x,(7) of the
block at the symmetry boundary as a function of
time for some values of o, n, and f; according to
Tab. [1} forcing according to Eq. (II), and ICs

given in Eq. (12)

of the examined values of o and f;. We observed that
the frequencies of the components in y,(f) change
as fp varies for each value of o~. Nonetheless, for
o = 0.5 and o = 0.9 the emergent behaviour re-
mains the same. In contrast, y,(¢) for o = 0.8 shows
drastically different behaviour for different f; values.
Thus we conclude that unlike the horizontal position
xy(t), the qualitative behaviour of the vertical dis-
placements of the blocks are strongly dependent on
the parametrisation of the system and the magnitude
of the forcing.

For Poiseuille flows in a circular pipe or between
two plates with constant cross section and pressure
gradient, the velocity profile is a second degree poly-
nomial of the distance from the pipe axis [10]. As
the Hagen-Poiseuille equation is a second order dif-
ferential equation for the flow velocity, similarly to
the equation of motion @2) for the displacement of
the blocks, it is reasonable to test a second degree
polynomial p(y) fit to the (X;, ;) mean displacement
of the blocks.

An example of this is shown in Fig. [7] with f; =
0.1 for each value of the scaling parameter o given
in Tab. [T} Similarly good quality fits were found for
the remaining combinations of o~ and fj. This result
is non-trivial, as the second degree polynomials of
the mean displacements arise despite the fact that the
forcing given in Eq. (TI)) is an exponential function
of the block index.

Tabs. show the best fit found for the ex-
amined cases by minimising the root-mean-square of
the x; — p(y;) differences. The table suggests a trend
towards decreasing R” values as the f; forcing para-
meter is increased, regardless of the value of 0. This
observation, along with the relatively large drop in
R? for fy = 1 suggests that for sufficiently large val-
ues of the forcing parameter, the system undergoes a
transition whereby the X; mean horizontal displace-
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Figure 6. The vertical displacement y,(7) of the
block at the symmetry boundary as a function of
time for some values of o, n, and f; according to
Tab. [I} forcing according to Eq. (II), and ICs
given in Eq. (12)
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Figure 7. The (%;, ;) mean displacement of the ele-
ments and the fitted second order polynomial for
fo = 0.1, with o and n according to Tab. [} forcing

according to Eq. (TI), and ICs given in Eq. (I2)

Table 2. Second degree polynomials fitted to the
(i, X;) dataset for different values of the f; forcing

parameter, with o = 0.5

fo Fitted polynomial R? value
0.01 —0.380y*> + 1.14y — 0.00102  0.9999
0.1 —1.42y% + 4.25y — 0.0669 0.9993
1 -10.3y* +30.7y — 1.23 0.9965
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Table 3. Second degree polynomials fitted to the
(3, x;) dataset for different values of the f; forcing
parameter, with o = 0.8

fo Fitted polynomial R? value
0.01 —0.188y + 1.69y + 0.000403  0.9997
0.1  —0.8722+784y-0.634 09979
1 —-7.03y? + 632y — 12.2 0.9864

Table 4. Second degree polynomials fitted to the
(3, x;) dataset for different values of the f; forcing
parameter, with o = 0.9

fo Fitted polynomial R? value
0.01 —0.0835y% + 1.52y + 0.0608  0.9995
0.1 —0357y2+652y—0.705  0.9994
1 2812 +513y—129 0991
4. SUMMARY

A planar oscillator chain was introduced with
geometric nonlinearity. The behaviour of this oscil-
lator was tested for initial conditions resulting in lin-
ear and nonlinear behaviour (see Eqs. (9) and (I0),
respectively) for impulsive excitations. It was found
that the vertical initial velocity resulting in linear be-
haviour is somewhat more efficient at dissipating the
initial energy of the system.

A constant forcing was introduced, analogously
to the Poiseuille flow with a constant pressure gradi-
ent. The forced system was examined for three dif-
ferent values of the scaling parameter o, each with
three different fy forcing parameters. The total en-
ergy and the horizontal displacement of the block
at the symmetry boundary showed harmonic beha-
viour over time in all cases, except for o = 0.5 and
fo=0.01.

The vertical displacement of the blocks exhib-
ited massive qualitative changes for the investigated
combinations of o and f; indicating high sensitivity
of the system to these parameters. Yet, the oscillator
is capable of reproducing the quadratic profile seen
in Poiseuille flows regardless of the value of o and
Jo-

In future works, we plan to compare the results
of constant forcing to Poiseuille flows quantitatively
as well, and extend the analysis by comparing the
behaviour of the planar oscillator chain during har-
monic forcing with flows induced by an oscillating
pressure gradient.
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