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ABSTRACT
An accurate characterization of the trajectory and

dynamic behavior of particles is crucial for processes
such as particle manipulation, design of efficient heat-
ing and cooling mechanisms, pollutant dispersion, and
biomedical applications. Despite significant progress
in the simulation of particle-fluid interactions, the dy-
namics of non-spherical particles, especially when
heat transfer is considered, is still an active area of
research. The focus of this study is on prolate particles
in shear flows using four-way direct numerical sim-
ulation (DNS). For this purpose, we employ a hy-
brid computational framework, in which the lattice
Boltzmann method is used for simulating the fluid
flow, the finite-difference approach for solving the en-
ergy equation, the immersed boundary method (IBM)
to capture fluid-particle interactions and the Discrete
Element Method (DEM) for modeling particle colli-
sions. This enables us to accurately model the beha-
vior of particles under isothermal and non-isothermal
conditions while varying particle size. The effect of
heat transfer on final equilibrium position and dy-
namic behavior of prolate particles in shear flows are
computed and analyzed. The results indicate that the
confinement ratio, defined as the ratio of particle ma-
jor radius to channel width, has a significant impact
on both the time it takes for a particle to reach its
equilibrium position and the vertical location of that
position.

Keywords: Lattice Boltzmann method, Particulate
flow, Prolate particle, Shear flow

1. INTRODUCTION
Understanding particle behavior in fluid flows is

fundamentally important for a broad spectrum of in-
dustrial, environmental, and biological applications.
The investigation of particle migration under vary-
ing flow conditions is essential for advancing the un-
derstanding of particulate motion in complex fluid

environments. Given that particles in real-world ap-
plications often deviate from idealized spherical geo-
metries, a detailed investigation into the dynamics of
non-spherical particles is essential for enhancing the
predictive accuracy and applicability of particle-laden
flow models. The dynamics of spheroidal particles
suspended in shear flows have long been a subject of
fundamental research in fluid mechanics. Jeffery [1]
already provided an analytical description of the rota-
tional kinematics of isolated spheroidal particles im-
mersed in a viscous fluid under linear shear conditions,
assuming negligible inertial effects corresponding to
the limit of zero particle Reynolds number. While
analytical methods are generally constrained to sim-
plified flow configurations, direct numerical simula-
tions enable the exploration of a broader spectrum of
physical phenomena in diverse flow regimes. How-
ever, with increasing fluid inertia, the symmetry of
the flow field surrounding the particle is broken, giv-
ing rise to more intricate and nonlinear particle dy-
namics. Fox et al. [2] conducted a study on spherical
particles in inertia-dominated shear flows and iden-
tified a supercritical pitchfork bifurcation occurring
beyond a critical particle Reynolds number (Rep), res-
ulting in the stabilization of two symmetric off-center
equilibrium positions. More recently, Lauricella et al.
[3] demonstrated that ellipsoidal particles exhibit dis-
tinct behavior, tending to return to the centerline at
elevated Rep, in contrast to spherical particles, which
display instability under similar conditions. In our pre-
vious work [4], we studied the dynamic behavior of
a thermal spheroidal particle with fixed size in shear
flows. The present study investigates the influence
of particle size on the dynamic behavior of thermal
non-spherical particles. Such insights may serve as
a foundational step toward the development of novel
techniques for the thermal and hydrodynamic manip-
ulation of particles. The lattice Boltzmann method
(LBM) has emerged as a widely adopted computa-
tional framework for simulating fluid flow systems in-
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volving particulate suspensions [2, 5, 6]. In the present
study, a hybrid computational framework is utilized,
combining LBM for fluid flow, Finite-Difference (FD)
schemes for the thermal field, the Immersed Bound-
ary (IB) method for fluid–structure interaction, and
the Discrete Element Method (DEM) for modeling
particle dynamics and collisions. This integrated ap-
proach enables high-fidelity simulations of coupled
fluid-particle-thermal interactions. All simulations are
carried out using the extensively validated in-house
solver ALBORZ [7].

2. NUMERICAL METHODS
Employing the LBM, this study conducts flow

field simulations. Using a finite-order spectral method
with Hermite polynomials, the Boltzmann equation
is discretized in phase space. The ensuing system
of interconnected hyperbolic equations is resolved
by integrating along the characteristics, yielding the
"stream-collide" equation for discrete populations fi:

fi(x + eiδt, t + δt) = fi(x, t) + Ωi + Fext
i , (1)

where x represents the fluid node’s spatial location, t
denotes time, Fext

i describes the external forces, and
ei corresponds to the discrete velocity vectors, de-
termined based on the lattice structure chosen, and
eiδt denotes the positional shift in different directions.
Throughout this investigation, the focus will be ex-
clusively set on the D3Q27 stencil. In Equation (1),
Ωi is the discrete collision operator. In this study, a
modified Hermite central moments space collision
operator is utilized, which allows to control bulk vis-
cosity independently. Unlike the traditional Hermite
polynomial space, this modified formulation allows
for the independent relaxation of trace-free and trace
components of the second order moments,

Ωi = T
−1ST ( f eq

i − fi) + Ei, (2)

where S corresponds to the diagonal matrix of the
relaxation rates, T represents the transform tensor
for moments, while T −1 represents its inverse, which
are determined based on the set of Hermite polyno-
mials. In Equation (2), f eq

i is the discrete equilib-
rium distribution. The equilibrium distribution func-
tion in discrete form is determined through an expan-
sion at a given reference temperature of the Maxwell-
Boltzmann distribution, equivalently reference iso-
thermal speed of sound cs, via Hermite polynomi-
als. The expansion allows then the use of the Gauss-
Hermite quadrature to satisfy exact recovery of the
desired number of moments of the distribution func-
tion on the selected set of discrete velocity vectors
leading to:

f eq
i = wi

N∑
n=0

1
n!c2n

s
Hn(ei) : aeq

n

(
ρ,u,

p
ρ

)
, (3)

where “:” represents the Frobenius inner product and
wi represents the lattice weight factor based on Equa-
tion (4) for three-dimensional cases. Hn denotes the
Hermite polynomial tensor of rank n. The quantity aeq

n

is the corresponding equilibrium Hermite coefficient,
u corresponds to velocity, p signifies pressure, ρ rep-
resents fluid density, and N indicates the expansion
order.

wi ={w0 =
8

27
,w1−6 =

2
27
,w7−18 =

1
54
,

w19−26 =
1

216
}

(4)

In Equation (2), Ei is a term that takes into ac-
count for variations in the diagonal elements of the
equilibrium third-order moments [6]. This term en-
sures that Galilean invariance is maintained in the
discretized representation. In fact, the lack of inde-
pendent support for diagonal terms in third-order mo-
ments by standard lattices causes viscosity to exhibit
an unconventional dependence on fluid velocity, i.e.,
non-Galilean-invariant (GI) viscous stress. Defined
as follows, the moments transformation tensor T is
constructed using a series of modified central Hermite
polynomials:

T = [|T 0⟩, ...,T N⟩], (5)

where column vectors |T i⟩ are based on Hermite poly-
nomials.

The energy equation for incompressible flows
but variable properties, when disregarding viscous
heating, can be simplified to:

∂(ρCpT )
∂t

+ ∇.(u ρCpT ) = ∇.(k∇T ) + Q, (6)

in which T denotes temperature, k signifies thermal
conductivity, Cp represents the specific heat capa-
city, and Q represents the heat source term. A Finite-
Difference (FD) technique is employed here for solv-
ing the energy equation. The third-order WENO ap-
proach is employed for discretizing the advection term
in the energy equation, ensuring stability even in re-
gions with large gradients. For handling the diffusion
terms, a fourth-order central finite difference (FD)
scheme is used for spatial discretization, while a first-
order explicit Euler discretization is applied in time
to update the relevant fields. The term for buoyancy
force (FB) within the flow-field equation is computed
using the Boussinesq approximation in this investiga-
tion. This approximation assumes a linear relationship
between the buoyancy term and the temperature differ-
ence. As a result, the momentum and energy relations
become coupled, as expressed by:

FB = ρ f ,0gβ(T − T0), (7)

The thermal expansion coefficient β, reference tem-
perature T0, gravity acceleration g, and fluid density
at the specified reference temperature ρ f ,0 appear in
this equation. The Exact Difference Method (EDM)
force scheme is used to incorporate the bulk forces F
and buoyancy force FB arising from particle-fluid in-
teraction through IBM into Equation (1). The Grashof
number, defined in Eq. (8), quantifies buoyancy in
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relation to viscosity

Gr =
ρ2

f g β D3
p∆T

µ2 , (8)

In this study, the Direct-Force IBM is employed
to represent the fluid-particle interaction forces includ-
ing heat transfer. Following the approach introduced
by Uhlmann [8] and later extended to thermal IBM
by [9], the force term (Fb) at each Lagrangian node
(Xb) is computed based on the desired velocity (Ud),
as outlined in Equation (9). At each Lagrangian node,
the heat source term (Qn

b) is computed using the same
way based on the desired particle temperature (T d

p)
using Equation (10):

Fn
b =

Ud − UnoF

∆t
, (9)

Qn
b =

T d
p − T noH

∆t
, (10)

in which ∆t is the time step, n denotes current time
step, and UnoF denotes the velocity at next time step
that would be calculated in the absence of any external
forcing (noF, for no forcing). For simulations conduc-
ted in three dimensions, the computation of UnoF is
based on Equation (11), relying on velocity values at
Eulerian points (ui, j,k).

In the same way, regarding heat source term com-
putations at each Lagrangian node, the "no heat source"
temperature T noH can be calculated using Equation
(12) according to the temperature at the Eulerian points
(Ti, j,k). This leads finally to:

UnoF =
∑
i, j,k

ui, j,k D
(
xi, j,k − Xb

)
(∆h)3, (11)

T noH =
∑
i, j,k

Ti, j,k D
(
xi, j,k − Xb

)
(∆h)3. (12)

Here, xi, j,k is the Eulerian nodes’ position, the
lattice size is denoted by ∆h, and Xb indicates the
Lagrangian points’ position. The discretized Dirac
delta function (D) is calculated using the 4-point delta
function, as proposed by Peskin [10].

The force applied to each Eulerian node and the
heat source on the Eulerian nodes can be determined
using Equations (13) and (14).

Fi, j,k = ρ f

∑
b,n

Fn
b D

(
xi, j,k − Xb

)
∆Vb, (13)

Qi, j,k = ρ f Cp, f

∑
b,n

Qn
b D

(
xi, j,k − Xb

)
∆Vb, (14)

where ∆Vb represents the unit volume of the relevant
Lagrangian boundary point segment. To incorporate
the particle forces into the LBM, the force Fi, j,k is
added to Equation (1) using EDM force scheme; to
incorporate the particles heat source term into the FD
solver, the heat source Qi, j,k is included in Equation

(6).
At each Lagrangian point, the desired velocity Ud

is formulated as follows:

Ud = Up + Ωp × (Xb − Xc), (15)

where Xc represents the particle center, and Ωp and
Up denote the particle angular and translational ve-
locities, respectively. By applying the fundamental
laws of motion, both velocities can be updated using
Equations (16) and (17):

Mp
dUp

dt
= −

∫
FbdV+M f

dUp

dt
+(ρp−ρ f )Vpg+Fc,

(16)

T = I
dΩp

dt
+ Ωp × IΩp, (17)

where the subscripts "p" indicate particle properties,
while " f " refers to fluid properties. The quantity Fc is
the summation of particle–particle and wall-particle
collision forces, M represents the mass, I stands for
the moment of inertia and T denotes the total torque
experienced by the particle’s center.

In the case of heat transfer, for a particle con-
sidered as being at a given temperature, one can dir-
ectly set the values of T d

p . Otherwise, for particles
with varying temperature, the exchanged heat (in the
following example, a heat generation Qg

p) is added to
Equation (10):

Qn
b =

T d
p − T noH

∆t
+ Qg

p. (18)

In this study, the contact interactions between
particles are modeled using the soft-sphere Discrete
Element Method (DEM), wherein the contact forces
are computed based on the overlap between interact-
ing particles. The total collision force consists of both
normal and tangential components, each derived ac-
cording to Hertzian contact mechanics [11]. The nor-
mal contact force between particle i and particle j is
given by:

Fn,i j = −kn δn ni j − ηn ∆vn,i j, (19)

where, kn is the normal stiffness coefficient and is
considered to be 8 × 104 N

m in this work, δn is the
overlap distance in the normal direction, ηn is the
normal damping coefficient and is considered to be
102 kg

s , ∆vn,i j is the relative normal velocity between
particles. The tangential contact force, based on the
Mindlin-Deresiewicz [12] model, is computed as:

Ft,i j = −kt δt ti j − ηt ∆vt,i j, (20)

where, kt is the tangential stiffness coefficient and is
set to 4 × 104 N

m , δt is the integrated tangential dis-
placement over the contact duration, ηt is the tan-
gential damping coefficient and is considered to be
50 kg

s , ∆vt,i j is the relative tangential velocity between
particles.

To ensure consistency with physical frictional lim-
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Figure 1. Illustration of the computational domain.

its, the tangential force is bounded by the Coulomb
friction criterion:

|Ft,i j| ≤ µi j|Fn,i j|, (21)

where µi j is the coefficient of friction between particles
i and j.

3. RESULT
In the present investigation, we examine the flow

behavior between two parallel plates moving in op-
posite directions, each with a constant velocity U, as
depicted in Figure 1. The separation distance between
the plates is denoted by H, and the computational do-
main is defined with dimensions 2H × H × H, such
that the flow direction extends twice the length of the
transverse dimensions. The velocity of the fluid at the
walls satisfies the no-slip condition, while periodic
boundary conditions are imposed along the remaining
directions of the domain.

The suspended particle under consideration is a
thermally active prolate spheroid, characterized by a
major radius a and a minor radius b. The particle’s
aspect ratio is defined as r = a/b, and its degree of
spatial confinement within the channel is quantified
using the confinement ratio K = a/H. The shear rate
for the considered geometry is defined as

G =
2U
H
, (22)

To analyze particle dynamics within the flow, we con-
sider a particle initially positioned at (x0, y0, z0) in the
computational domain. The particle Reynolds number,
using the major radius a as the characteristic length
scale, is expressed as:

Rep =
Ga2

ν
, (23)

where ν denotes the kinematic viscosity of the fluid.In
this study, a particle Reynolds number of Rep = 30 is
considered for all cases.

This study aims to investigate the influence of
the confinement ratio on the equilibrium lateral posi-
tion of the heated prolate particle in the shear-driven
flow. Figure 2 illustrates the migration trajectory of a
neutrally buoyant prolate spheroidal particle, initially
positioned at z∗0 = z0/H = −0.1, in an isothermal

Couette flow. In this scenario, the balance among
hydrodynamic forces, inertial lift and wall-induced
interactions drives the particle toward a stable vertical
equilibrium position near the lower wall. Particles
with lower confinement ratios (i.e., smaller relative
size compared to the channel height) tend to take
longer to reach this equilibrium, which itself occurs
at a lower vertical position due to altered balance of
forces.

Next, the particle is assumed to be hot with a
constant temperature, and a Dirichlet boundary con-
dition—set to the same temperature as the initial
fluid domain—is applied on the moving plates. When
thermal effects are introduced, as shown in Figure 3
for a thermal case with Gr = 80, the presence of
heat transfer significantly alters the particle’s equi-
librium behavior. In the case with a Grashof number
Gr = 80, the thermally induced drag forces arising
from buoyancy-driven convection dominate over grav-
ity and other hydrodynamic contributions. As a result,
the particle stabilizes in the upper region of the chan-
nel. Interestingly, decreasing the confinement ratio in
the thermally active case leads to an increase in the
final equilibrium height, bringing the particle closer
to the upper wall. This behavior indicates a stronger
influence of convective forces in less confined envir-
onments.

To examine the influence of neighboring particles
on the migration dynamics and equilibrium position-
ing of a heated particle, a configuration of eight particles
with aspect ratio K = 0.1 is considered. With this con-
sideration, the packing ratio—i.e., the ratio of particle
volume to total volume—is equal to 0.004. All particles
are initially positioned at z∗0 = −0.1, but have differ-
ent initial streamwise locations x0 within the domain,
with a center-to-center distance of 2.5a. by th Figure 4
presents the time evolution of the normalized ver-
tical position z∗ = z/H for eight thermally active pro-
late spheroidal particles. The trajectories labeled P0
through P7 correspond to individual particles, while
the curve labeled Mean represents the ensemble aver-
aged position over time.

Initially, all particles undergo a transient migra-
tion phase, during which they move from their initial
positions toward a stable equilibrium location. This
transient period is most pronounced for T ∗ < 50, re-
flecting rapid vertical displacement primarily driven
by the dominance of convective drag forces in the
early stages.

As reported earlier for the single-particle case,
the vertical position eventually stabilizes near z∗ ≈
0.4. However, the presence of multiple particles intro-
duces considerable fluctuations around this equilib-
rium height. These deviations are attributed to hydro-
dynamic interactions and flow disturbances caused by
neighboring particles. Nevertheless, the mean traject-
ory converges to a steady-state position similar to the
single-particle case, with reducing fluctuations at later
times.

Based on the simulation results, the time-averaged
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Figure 2. Migration trajectory of an isothermal
prolate particle vs. dimensionless time (Gt) at vari-
ous confinement ratios.

Figure 3. Migration trajectory of a hot prolate
particle vs. dimensionless time (Gt) at various con-
finement ratios for Gr=80.

center-to-center nearest neighbor distance is approx-
imately 3a. The increased fluctuation amplitude ob-
served in the multi-particle case highlights the transi-
ent influence of inter-particle interactions, although
the long-term equilibrium behavior remains qualitat-
ively consistent with that of single particle. how ever
that such behavior may change significantly at higher
packing fractions. However, it is important to note
that this behavior may change significantly at higher
packing fractions.

4. CONCLUSION
In this study, we employed a hybrid computa-

tional framework combining the Lattice Boltzmann
Method (LBM), Immersed Boundary Method (IBM),
a finite-difference (FD) scheme, and the Discrete Ele-
ment Method (DEM) to investigate the dynamic beha-
vior of non-spherical particles in a shear-driven flow.
The results reveal that the confinement ratio signific-
antly influences both the time required for a particle to
reach its equilibrium position and the vertical location
of that position.

In the isothermal case, particles with lower con-

Figure 4. Migration trajectory of eight hot prolate
particle vs. dimensionless time (Gt) at confinement
ratio K=0.1 for Gr=80.

finement ratios (i.e., smaller particles relative to the
channel height) migrate more slowly toward their equi-
librium positions compared to larger particles. Con-
versely, in the thermal case, smaller particles reach
equilibrium more quickly, suggesting that thermally
induced forces accelerate vertical migration.

Furthermore, in both isothermal and thermal con-
figurations, particles with lower confinement ratios
tend to equilibrate farther from the channel centerline.
The presence of multiple particles within the domain
introduces complex interactions. Particle-particle col-
lisions, coupled with hydrodynamic interactions and
flow disturbances, lead to chaotic fluctuations in the
vertical equilibrium positions. However the mean tra-
jectory position is consistent with that of single particle.
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