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ABSTRACT

When thin, flexible structures, such as the ro-
tors of a quadcopter, are subjected to airflow, aer-
oelastic phenomena can occur due to the interaction
of elastic, inertial, and aerodynamic forces. Due to
these phenomena, the flexible structures lose their
stability at a critical flow velocity. Flutter is an
aeroelastic instability that leads to dynamic stabil-
ity loss. In this paper, we examine the flutter of the
rotor blades during the forward flight of the quad-
copter. In this regime, the relative wind experienced
by the rotor blades changes periodically. This results
in parametric excitation, which can lead to a reduced
critical velocity compared to the case without para-
metric excitation. To consider that the relative wind
changes along the radius of the rotor, we construct a
three-dimensional reduced-order model by chaining
multiple two-degree-of-freedom aeroelastic models.
The aerodynamic forces acting on the two-degree-of-
freedom models are computed using a quasi-steady
aerodynamic model.

We apply the reduced-order model to compute
the stability chart of a real quadcopter. To achieve
this, we perform simple measurements on the rotor
to obtain the geometric parameters, the stiffness, and
the damping coefficients. We then compute the sta-
bility chart for the quadcopter by solving the equa-
tions of motion of the reduced-order model numer-
ically. Using the computed stability chart, we can
determine, for a given rotor speed and forward flight
velocity, the minimal speed increase required for the
rotors of the quadcopter to lose their stability. We call
this minimal speed increase the flutter safety margin.
We gather velocity data during the flight of a quad-
copter and compute the flutter safety margin during
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the flight.

Keywords: aeroelasticity, fluid-structure interac-
tion, numerical stability analysis, parametric ex-
citation, quadcopter

1. INTRODUCTION

Aeroelastic phenomena affect several types of
slender elastic structures subjected to airflow, such as
flexible wings, helicopter rotor blades, and wind tur-
bines. Aeroelasticity studies the interactions between
inertial, elastic, and aerodynamic forces on flexible
structures that are exposed to airflow. The theory
of aeroelasticity is extensively covered in the literat-
ure [} 2} [3]. One dangerous aeroelastic instability is
called flutter, which is a dynamic stability loss [4]]. A
famous example of flutter is the vibrations and struc-
tural failure of the Tacoma Narrows bridge [3 16].

Airflow oscillations can cause parametric ex-
citation in aeroelastic systems [7]. Parametric ex-
citation differs from external forcing. The excita-
tion source during parametric excitation is the time-
varying modification of a system parameter. In the
case of airflow oscillations, the parameters of the
aerodynamic lift and moment are time-varying. The
interaction of self- and parametric excitation can in-
crease or decrease the critical wind velocity.

Typically, a two-degrees-of-freedom (2-DOF)
reduced-order model is used to investigate flutter and
compute the critical velocity [8]. However, one ma-
jor disadvantage of this model is that it assumes a
uniform velocity along the wing, while rotorcraft,
such as drones, have a linear velocity distribution
along the span of their wings. Thus, it is important to
study a more complex reduced-order model to gain
a better understanding of flutter safety for these air-
craft.
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This work investigates a three-dimensional
reduced-order model subjected to periodically vary-
ing airflow to study flutter in flying drones. In Sec-
tion 2, we introduce the mathematical model. In Sec-
tion 3, we compute the stability charts. In Section 4,
we introduce the flutter safety margin and compute it
during the flight of the drone. In Section 5, we sum-
marize the results.

2. MATHEMATICAL MODEL

In this section, we will describe the three-
dimensional reduced-order aeroelastic model. The
building block of this model is a two-degrees-of-
freedom (2-DOF) aeroelastic model shown in Figure
The two degrees of freedom in the model are the
pitching (a) and plunging () degrees of freedom.
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o =

L
M @9@% .

Figure 1. The 2-DOF aeroelastic model.

In this model, we assume that the center of grav-
ity (denoted by G) is located in the middle of the
wing. We denote the distance between the elastic
axis and the center of gravity by ab and the semi-
chord by b. The equations of motion of this model
are [9]).

mh + Chh + kph = —L,
1,0+ coax+ kg = M,

6]

where h and a describe the vertical (plunge) displace-
ment (positive downwards) and angular (pitch) dis-
placement (positive in the clockwise direction), re-
spectively. The mass of the wing is m and 1, is the
moment of inertia. The stiffness and damping coeffi-
cients for the plunge DOF are denoted by k;, and ¢y,
respectively. For the pitch DOF, these coeflicients are
denoted by k, and c¢,. L and M denote the aerody-
namic lift and moment (together they will be called
the aerodynamic forces). To compute the aerody-
namic forces L and M, we apply the quasi-steady
approximation of the Theodorsen lift function [10].

Thus,
h .
a+—=+Db l—cz i ,
Vv 2 Vv

a+ﬁ+b(l—a)g],
Vv 2 Vv
2)

L = 2rnpU?bS

1
M = 2rpU’b*S (a + E)
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where S is the span of the wing, a is defined via Fig-
ure[T} p is the density of the air and V is the velocity
of the air. One big disadvantage of this model is that
it assumes a constant velocity distribution along the
span of the wing. This assumption is not valid for
rotorcraft, since in their case the velocity increases
linearly from the hub to the tip of the wing.

We eliminate this disadvantage by chaining mul-
tiple two-degrees-of-freedom (2-DOF) models into
a three-dimensional reduced-order model through a
pair of springs. Each wing segment (i.e., a single 2-
DOF model) has a pitch and plunge DOF, with the
plunge DOF corresponding to the bending motion
of the wing. These DOFs are coupled to those of
the neighboring wing segments by springs. The con-
struction is shown in Figure[2|for two wing segments.

Figure 2. The three-dimensional reduced order
model.

This construction consists of wing segments con-
nected to each other by identical springs in a series
configuration. The model is shown for two wing seg-
ments for simplicity, but it can be easily generalized
for more segments. The equation of motion for this
three-dimensional model is

L (thbahdhih)
. . M, (hl,hl,al,dl,éh)
i+ Ci+Ka=| ATV 3

= = |k (hzy ha, @z, @, 2

M, (hz, h, @, c, C'i/z)

<

where Li(hi,hiaaiadi,di)’Mi(hhhi,ai,diad’i) are
the lift and moment acting on the i-th wing segment,
M, C, and K are the mass, damping, and stiffness
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matrices respectively, and x = [x, x2, X3, x4]7 is the
state vector. The four variables in the state vector are
the two plunging displacements &, h, and the two
pitching displacements a;, a3, i.e., x; = hj,x, =
a1, x3 = hp, x4 = a». The mass and stiffness matrices
are derived using the principles of Lagrangian mech-
anics and are given by

O2E,

M= [axiax j] @
U

g - |:(9X[(9Xj:| ’ (5)

where E; is the kinetic energy and U is the potential
energy of the system. We assume proportional damp-
ing, meaning that the damping matrix C is a multiple

of the stiffness matrix X, i.e.,
C =dK, ©6)

where d is a constant.

For the model we have taken the structural para-
meters from [9] but scaled them to match the dimen-
sions and mass of our drone’s propeller. The result-
ing parameters are shown in Table [T}

Parameter name | Parameter value
a 0
b 0.017 m
Ch 0.003 kg/s
Cq 0.006 kgmz/ s
® 0.00023 kgm?
kn, 250 N/m
ke 0.49 Nm/rad
m 0.008 kg
S 0.167m
P 1.2 kg/m>.

Table 1. Numerical values of the parameters in
the three-dimensional reduced order model.

Now we will describe the parameters of the indi-
vidual wing segments based on the parameters of the
whole wing given in Table[T] The mass, moment of
inertia, and span of the i-th wing segment are given
by

L @=— s5i=2, @
n

where m;, ®;, §; are the mass, moment of inertia,
and span of the i-th wing segment, respectively, and
n is the number of wing segments. We approximate
the stiffness coefficients by a linear function as

ko, =ko(n—i+1), kp =kyn—i+1), ®)

where k,,, kj, are the pitching and plunging stiffness
coefficients of the i-th wing segment, respectively. It
is not straightforward to determine the damping coef-
ficient of the i-th wing segment. However, it was de-
termined by [[11]] that the use of

Ca; = Ca NN, Cn = cyVn, )

3

leads to the fastest convergence of the critical velo-
city as a function of n. For this reason, we use these
functions to obtain the damping coefficient of the i-th
wing segment.

We will now compute the critical velocity of the
model, which is the flow velocity at which the system
loses its stability and flutter oscillations occur. First,
we assume a constant velocity distribution along the
wing. To compute the critical velocity, we determ-
ine the eigenvalues of the system’s Jacobian for wind
velocities starting from 0, increasing by 1 m/s up to
100 m/s. As the velocity increases, a pair of complex
conjugate eigenvalues will cross the imaginary axis.
The velocity at which this occurs is the critical velo-
city. The critical velocity as a function of the number
of wing segments is shown in Figure
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Figure 3. The critical velocity as a function of the
number of wing segments assuming constant ve-
locity distribution.

The critical velocity of the two-degrees-of-
freedom (2-DOF) model is 52m/s, which corres-
ponds to n = 1. As the number of wing seg-
ments increases, the critical velocity also increases
and converges to 70m/s. Thus, the use of the three-
dimensional model results in approximately 35%
higher critical velocity, which confirms that this more
complex model is indeed necessary to obtain accur-
ate results even for fixed-wing aircraft.

Now we will investigate the critical velocity
for drones, which have a linear velocity distribution
along the wing, as follows:

i
Vi=V—,
n

(10)

where v; is the wind velocity at the i-th wing segment.
The critical velocity as a function of the number of
wing segments is shown in Figure 4]
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Figure 4. The critical velocity as a function of the
number of wing segments assuming linear velo-
city distribution.

The critical velocity of the two-degrees-of-
freedom (2-DOF) model is 52m/s, which corres-
ponds to n = 1. As the number of wing seg-
ments increases, the critical velocity also increases
and converges to 82m/s. Thus, the use of the three-
dimensional model results in approximately 58%
higher critical velocity. This critical velocity is
also approximately 17% higher than in the previous
case where we assumed constant velocity distribution
along the wing.

3. STABILITY CHARTS

In this section, we will compute stability charts
for the three-dimensional model, which show as a
function of the rotor speed and the forward flight ve-
locity, whether flutter occurs, i.e., the stability of the
system.

As a first step, we need to compute the time-
varying relative wind velocity experienced by the ro-
tor blade as a function of the rotor speed and the for-
ward flight velocity. This velocity is time-varying be-
cause, as the rotor blade travels forward (in the same
direction as the rotorcraft is flying), the relative velo-
city due to the flight of the drone is subtracted from
the relative velocity due to the rotor rotation. As the
blade travels backward (in the opposite direction to
the rotorcraft flight), the opposite happens and the
relative velocity increases. The relative velocity can
thus be written as

(1)

where s is the distance from the hub of the rotor w
is the angular velocity of the rotor and vy is the for-
ward velocity of the drone. Additionally we define
the rotational velocity of the wing tip as

v(t, 8) = ws + vy sin(wt),

12)

We computed the stability chart of the three-
dimensional model by carrying out numerical simu-
lations with the initial condition a@;(0) = 0.1. We ran
the simulations for 100 s and considered the system
unstable if the tip rotation exceeded 0.1 at any point
during the simulation, i.e., the system is considered
unstable if

It 2 au(r) > 0.1.

vV, = WS.

13)

4

The stability charts for different n values are
shown in Figures[5] [6] [7} The blue region indicates
the unstable region, while the yellow region indicates
the stable region.
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Figure 5. Stability chart for n = 1.
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Figure 6. Stability chart for n = 5.
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Figure 7. Stability chart for n = 10.

For a stationary drone, where the forward velo-
city vy = 0, the critical velocity is 88 m/s as shown
in the previous section. As the forward velocity v
increases, the rotor will lose its stability at various v
values depending on the tip velocity v,. If v, < 50
m/s, the stability loss occurs at 50 < vy < 90 m/s.
Howeyver, these forward velocities are not attainable
since the drone is not able to fly forward faster than
the tip velocity. For 50 < v, < 65 m/s, the stability
loss occurs at vy > 90 m/s. Above v, = 65 m/s, the
stability boundary starts to decrease as v, increases
and reaches vy = 0 m/s at the critical velocity v, = 88
m/s. The stability charts corresponding to a lower
number of wing segments have a similar shape but
the unstable regions are larger.

4. FLUTTER SAFETY MARGIN

In this section, we define the flutter safety mar-
gin and compute it during a flight of the drone. The
flutter safety margin is defined as the minimal in-
crease in the relative wind velocity at the tip of the
wing, which would result in flutter oscillations. This
is defined mathematically as the distance between the
point (v, v,) and the stability boundary, i.e.,

S(Vf’ Vr) = dlSt((Vf, Vr)a 3)9

where S is the flutter safety margin, v is the forward
velocity of the drone, v, is the rotational velocity of
the wing tip, and 8B is the stability boundary in the
(vy,v,) plane.

To compute the flutter safety margin during the
flight of the drone, we first measured the rotor speed
corresponding to different forward flight velocities.
The goal of the measurement was to determine the
working range of a general drone propeller, not to
validate the model. We carried out this measurement
in the departmental wind tunnel. The drone was fixed
inside the wind tunnel on a force measurement device
so that we could measure the aerodynamic forces act-

(14)

5

ing on the drone. We then set a constant wind ve-
locity and increased the velocity of the drone rotors
until the net force acting on the drone was zero. In
this state, the lift of the rotors counteracts the aerody-
namic drag and gravity. This means that the velocity
of the drone rotors is the same as it would be during
forward flight. The measurement setup is shown in

Figure[8]

AL
|

Figure 8. The measurement of the drone rotor ve-
locities in the wind tunnel.

The result of the measurement is shown in Figure
[9)and Table[2} where f denotes the rotational velocity
of the propeller in revolutions per minute.
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Figure 9. The rpm of the drone rotor at different
forward flight velocities

v[m/s] | nlrpm]
0 3205
2 3206
4 3286
6 3503

Table 2. The velocity of the drone rotor at differ-
ent forward flight velocities

As the forward velocity of the drone increases,
the rotor velocity also increases, which becomes
more apparent at higher forward velocities. Note
that these rotor velocities result in a rotor tip velocity
above the critical velocity for the two-dimensional
reduced-order model (which is 52 m/s). Thus, this
measurement confirms that the three-dimensional
reduced-order model is indeed more accurate than
the two-dimensional one.

We show the drone’s forward flight velocities
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and the corresponding rotor tip velocities on the sta-
bility chart in Figure [T0] with a black line.
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Figure 10. The rotor tip velocities and their cor-
responding forward flight velocities shown on the
stability chart.

The drone stays well away from the stability
boundary during forward flight, so flutter does not
occur. This again confirms that the three-dimensional
model results in more accurate results than the two-
dimensional model since the latter predicts that the
drone is in the unstable regime during flight. The flut-
ter safety margin is shown in Table[3] As the drone
accelerates, the flutter safety margin decreases, but
remains above 20m/s, so there is no risk of flutter.

v[m/s] | nlrpm] | S[m/s]
0 3205 25.95
2 3206 25.93
4 3286 24.53
6 3503 20.74

Table 3. The flutter safety margin during forward
flight

5. SUMMARY

In this paper, we develop a three-dimensional
reduced-order model for wing flutter. This model is
built by chaining multiple two-dimensional reduced-
order models together using linear springs. As a
result, each wing segment in the three-dimensional
model has a pitch and a plunge degree of freedom,
but these are influenced by the motion of the neigh-
boring wing segments.

First, we computed the critical velocity (i.e., the
smallest velocity at which flutter is present) for the
three-dimensional model as a function of the number
of wing segments. We found that the use of multiple
wing segments results in an increase in the critical
velocity. As the number of wing segments increases,

6

the critical velocity converges to a fixed value and
does not increase indefinitely. We also concluded
that the use of a linear velocity distribution along the
wing results in an even greater critical velocity.

Next, we computed stability charts using the
three-dimensional model for various n values and
found that increasing the number of wing segments
results in the enlargement of the stable region. Based
on the stability chart, we defined a flutter safety mar-
gin as the distance from the stability boundary. To
compute the flutter safety margin during flight, we
performed wind tunnel measurements to obtain the
rotor tip velocity for different forward flight velo-
cities. Based on the measurement results, we com-
puted the flutter safety margin during forward flight
and found that it decreases as the drone accelerates,
but never approaches zero, so flutter does not develop
during the flight of the drone.
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