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ABSTRACT 

Multiphase reactive flows are essential in energy, 

chemical, and environmental systems. This paper 

reviews and compares several multiscale modeling 

methods for simulating reactive multiphase flows, 

including particle-resolved direct numerical 

simulation (PR-DNS), computational fluid 

dynamics-discrete element method (CFD-DEM), 

coarse-grained CFD-DEM, multi-phase particle-in-

cell (MP-PIC), and coarse-grained computational 

fluid dynamics -direct simulation Monte Carlo 

(CFD-DSMC). These methods are assessed for their 

accuracy, scalability, and computational efficiency 

in simulating dense gas-solid flows. The developed 

multiscale models are comprehensively validated 

against experimental measurements and applied 

across various scales: microscale simulations of char 

combustion, mesoscale simulations of particle 

clusters in coal gasification, macroscale simulations 

of biomass chemical looping gasification, and 

industrial-scale applications for coal pyrolysis and 

combustion staged conversion. This work 

emphasizes the importance of selecting appropriate 

modeling strategies for different scales and explores 

the potential integration of high-performance 

computing and artificial intelligence to enhance 

multiscale simulation tools. 

Keywords: Multiphase flow, multiscale 

simulation, computational fluid dynamics, flow 

and reaction coupling  

1. INTRODUCTION 

The dense gas-solid reactive systems are widely 

present in energy, chemical, and environmental 

systems (e.g., combustors, gasifiers, reactors, etc.), 

where complex gas-solid flow, heat and mass 

transfer, and chemical reactions occur. With the 

rapid development of computer technology, 

computational fluid dynamics (CFD) has become an 

increasingly important complement to both 

theoretical analysis and experimental research. It 

effectively addresses the limitations of these two 

approaches and comprehensively and accurately 

reproduces the flow, heat transfer, and reactive 

characteristics of dense gas-solid flows. However, 

the complex multi-scale nature of dense gas-solid 

flows, both spatially and temporally, places stringent 

demands on numerical simulation and necessitates 

the adoption of appropriate multi-scale solving 

strategies[1–4].  

Depending on the resolution and scale of interest, 

dense gas-solid reactive systems are commonly 

modeled by three classic approaches:  particle-

resolved direct numerical simulation (PR-DNS), 

computational fluid dynamics-discrete element 

method (CFD-DEM) under Euler-Lagrange 

framework, and two-fluid model (TFM) under Euler-

Euler framework. In PR-DNS, every particle and the 

surrounding fluid field are fully resolved, so no 

closure models are needed to capture fluid motion; 

this yields outstanding accuracy but comes at the cost 

of extremely fine grids and correspondingly massive 

computational resources, which confines PR-DNS to 

small domains and modest particle counts [5,6]. The 

conventional CFD-DEM approach within the Euler-

Lagrange framework alleviates this burden by 

allowing grid cells that are roughly three to five times 

larger than the particles they contain. [7–9]. The gas 

phase is solved within the Eulerian framework, while 

the solid-phase particle motion is solved in the 

Lagrangian framework. The reduction in grid 

quantity leads to a decrease in computational load. 

However, the accuracy of gas-phase motion 

predictions is slightly lower than that of PR-DNS. 

This method can track each particle individually, 

providing accurate particle-scale information, which 

is then interpolated and fed back into the gas-phase 

grid for further computations. This approach is 

constrained by particle collision models and grid size 

requirements and is still mainly applied in 

laboratory-scale simulations with a limited number 

of particles[10,11]. By contrast, the two-fluid model 

(TFM) under Euler-Euler framework adopts the 

continuous medium assumption, treating the solid 

phase as a fluid ("pseudo fluid") and solving its 

motion in the Eulerian framework. The key 
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challenge of this method lies in modeling the 

viscosity and pressure of the solid phase, often 

achieved through the kinetic theory of granular flow 

(KTGF) [12]. Generally speaking, the can 

significantly reduce computational load and has been 

widely used in predicting gas-solid flow within 

large-scale industrial equipment[13–15]. However, the 

Euler-Euler method has notable drawbacks: the 

accuracy of the solid-phase motion is limited to the 

computational grid scale, preventing the capture of 

rich particle-scale information. As a result, it is not 

well-suited for investigating the transport 

mechanisms of particles in fluidized bed equipment. 

In the simulation of multiphase reactive flows, 

traditional single-scale methods often fail to 

effectively capture the complex interactions between 

fluids, particles, and reactions. Multi-scale 

simulation methods, by considering physical 

phenomena at different scales, can overcome the 

limitations of single-scale approaches, significantly 

improving prediction accuracy and computational 

efficiency. Specifically, multi-scale simulation 

methods not only focus on macroscopic flow 

characteristics but also allow for an in-depth 

exploration of microscopic particle behavior and 

chemical reaction mechanisms. This study 

comprehensively reviews and compares the 

applicability, accuracy, and scalability of the 

multiscale numerical simulation methods we have 

developed in recent years within the Euler-Lagrange 

framework for modeling multiphase reactive flows, 

providing essential tools for studying and optimizing 

these systems. 

2. MODEL DESCRIPTION 

2.1 Particle-resolved direct numerical 
simulation 

In PR-DNS, the gas phase is solved within an 

Eulerian framework, while the solid phase is tracked 

using an Lagrangian framework. This approach 

requires enforcing no-penetration and no-slip 

boundary conditions on particle surfaces within the 

computational domain, along with the corresponding 

heat and mass transfer boundaries. The immersed 

boundary method with virtual points introduces the 

effect of particles without requiring mesh 

reconstruction, instead constructing a virtual 

embedded boundary through interpolation. The mass 

conservation equation, momentum conservation 

equation, energy conservation equation, and species 

conservation equation for the gas phase are 

expressed as follows: 
∂𝜌

∂𝑡
+ ∇ ⋅ (𝜌𝐮) = 0 (1) 

𝜌
∂𝐮

∂𝑡
+ 𝜌𝐮 ⋅ ∇𝐮 = −∇𝑝 + ∇ ⋅ 𝜏 (2) 

𝜌
∂𝑇

∂𝑡
+ 𝜌𝐮 ⋅ ∇𝑇 = ∑(𝜔

˙

𝑘 − ∇ ⋅ 𝕁𝑘)

𝑘

(
𝑇𝑅

𝑐𝑦𝑀𝑘

−
ℎ𝑘

𝑐𝑣

) −
𝜌𝑇𝑅

𝑐𝑣𝑀
∇ ⋅ 𝐮

+
𝜏2

2𝜇𝑐𝑣

−
∇ ⋅ 𝐪

𝑐𝑣

 

(3) 

𝜌
∂𝑌𝑘

∂𝑡
+ 𝜌𝐮 ⋅ ∇𝑌𝑘 = −∇ ⋅ 𝕁𝑘 + 𝜔

˙

𝑘 (4) 

where ρf, uf, and pf represent the gas phase density, 

velocity, and pressure, respectively. τf denotes the 

viscous stress tensor. T represents temperature. cv  is 

the specific heat at constant volume. R denotes the 

universal gas constant. M is the molar mass of the gas 

mixture. hk  denotes the enthalpy of the individual 

species. Yk denotes the mass fraction of species k. 𝜔
˙

𝑘 

represents the gas-phase reaction source term for 

species k, and 𝕁𝑘 is the diffusion flux of species k. 

The principle of the immersed boundary method 

with virtual points is to designate several layers of 

grid points near the particle boundary as virtual 

points (the number of layers is determined by the 

spatial discretization scheme; in this study, three 

layers are used). These virtual points are assigned 

values artificially through interpolation, ensuring 

that the fluid outside the particle satisfies the 

corresponding boundary conditions at the particle 

surface during spatial discretization. At each sub-

time step, the assignment of values to the virtual 

points precedes the solution of the flow field. Mirror 

points symmetric to the virtual points across the 

boundary, along with additional auxiliary points on 

the same side of the interface, are selected to 

construct interpolation formulas for various 

boundary conditions, through which the values of the 

virtual points are determined. The construction of 

Dirichlet boundary conditions requires only a single 

mirror point, whereas Neumann and Robin boundary 

conditions necessitate, in addition to the mirror point, 

an auxiliary point. Depending on the dimensionality 

of the case study, the mirror and auxiliary points are 

obtained using bilinear or trilinear interpolation 

based on neighbouring grid points. Based on the 

boundary condition formulation, by specifying 

appropriate boundary conditions for species balance, 

velocity, and temperature, accurate simulation of 

particles can be achieved. 

 

 

Figure 1. Schematic diagram of the immersed 

boundary method with virtual points. 

2.2 Euler-Lagrange method 

This section introduces the computational fluid 

dynamics-discrete element method (CFD-DEM) 

method, coarse-grained CFD-DEM method, the 
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multi-phase particle-in-cell method (MP-PIC) 

method, and the coarse-grained computational fluid 

dynamics-direct simulation Monte-Carlo (CFD-

DSMC) method within the Euler-Lagrange 

framework, focusing on the governing equations for 

the gas phase and solid phase, as well as sub-models 

for particle collisions, heat and mass transfer, and 

chemical reactions. 

2.2.1 Gas-phase control equations 

The mass conservation equation and momentum 

conservation equation for the gas phase are 

expressed as follows: 
𝜕(𝜀𝑓𝜌𝑓)

𝜕𝑡
+ 𝛻 ⋅ (𝜀𝑓𝜌𝑓𝒖𝑓) = 𝑅𝑓 (5) 

𝜕

𝜕𝑡
(𝜀𝑓𝜌𝑓𝒖𝑓,𝑖) + 𝛻 ⋅ (𝜀𝑓𝜌𝑓𝒖𝑓𝒖𝑓)

= −𝜀𝑓𝛻𝑝 + 𝜌𝑓𝜀𝑓𝑔 + 𝛻 ⋅ (𝜀𝑓𝜏𝑓) − 𝐼𝑝𝑓 
(6) 

𝜕(𝜀𝑓𝜌𝑓𝐶𝑝,𝑓𝑇𝑓)

𝜕𝑡
+ 𝛻 ⋅ (𝜀𝑓𝜌𝑓𝑢𝑓𝐶𝑝,𝑓𝑇𝑓) 

= 𝛻 ⋅ [𝜀𝑓(𝜅𝑓 +
𝐶𝑝,𝑓𝑣𝑓,𝑡

𝑃𝑟𝑓,𝑡
)𝛻𝑇𝑓] − 𝑄𝑓𝑝 − 𝛥𝐻𝑟𝑓 + 𝛾𝑅𝑓(𝑇𝑅𝑓

4 − 𝑇𝑓
4) 

(7) 

𝜕(𝜀𝑓𝜌𝑓𝑋𝑛)

𝜕𝑡
+ 𝛻 ⋅ (𝜀𝑓𝜌𝑓𝑢𝑓𝑋𝑛) = 𝛻 ⋅ (𝜀𝑓𝜌𝑓𝐷𝑛𝛻𝑋𝑛) + 𝑅𝑓𝑛 (8) 

where εf represents the gas phase void fraction. Rf  

and Ipf correspond to the mass change source term 

due to chemical reactions and the interphase 

momentum exchange source term. Cp,f， Tf，κf, and 

Prf,t represent the specific heat capacity at constant 

pressure, temperature, thermal conductivity, and 

Prandtl number of the gas phase, respectively. Qfp 

denotes the convective heat transfer between the gas 

and solid phases, ΔHrf is the heat of reaction, γRf is 

the radiative heat transfer coefficient, and TRf is the 

radiative temperature of the gas phase. Xn and Dn 

represent the mass fraction and diffusion coefficient 

of gas component n, respectively. Rfn denotes the 

mass change due to the chemical reactions involving 

component n. 

2.2.2 Solid-phase control equations 

In the Lagrangian framework, the motion of 

particles in the gas-solid flow is obtained by solving 

Newton's second law. The external forces acting on 

the particles in the flow field mainly include drag 

forces induced by fluid-particle interactions, 

pressure gradient forces, viscous forces, and other 

forces such as collision forces, viscous forces, and 

electrostatic forces arising from particle-particle and 

particle-wall interactions. These external forces 

allow the determination of particle position, velocity, 

acceleration, and other related quantities. The 

equation of motion for the particles can be expressed 

as: 

𝑚𝑝

𝑑𝑣𝑝

𝑑𝑡
= 𝑚𝑝𝑔 + 𝐹𝑓𝑝 + 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑐 + 𝐹𝑎𝑓 (9) 

𝐼𝑝

𝑑𝜔𝑝

𝑑𝑡
= 𝑇𝑝 (10) 

where mp and vp represent the particle mass and 

velocity, respectively, while mpg, Ffp, Fdrag, Fc, and 

Faf correspond to the gravitational force on the 

particle, pressure gradient force, drag force, collision 

force, and additional forces. Ip, ωp, and Tp represent 

the particle moment of inertia, angular velocity, and 

torque, respectively. In the CFD-DEM and coarse-

grained CFD-DEM method, the collision force can 

be resolved by decomposing it into the normal ( 𝐹𝑖𝑗
𝑛) 

and tangential ( 𝐹𝑖𝑗
𝑡 ) components. In the MP-PIC and 

CFD-DSMC methods, the collision force is not 

directly solved but rather modeled through a 

submodel. The particle collision models for the three 

methods will be discussed in detail in the following 

sections. 

2.2.2.1 Interphase drag model 

The drag force is primarily caused by the 

velocity difference between the particles and the 

fluid, and it is the main mechanism for momentum 

exchange between the particle and gas phases. 

Therefore, an accurate drag force model is crucial for 

predicting gas-solid flow processes. For a single 

particle within a particle group, the drag force it 

experiences can be calculated as: 

𝐹𝑑𝑟𝑎𝑔 =
𝛽𝑉𝑝

1 − 𝜀𝑓

(𝑢𝑓 − 𝑣𝑝) (11) 

where β is the interphase momentum exchange 

coefficient, also known as the drag coefficient, and 

Vp represents the particle volume. Currently, 

commonly used drag force models can be broadly 

classified into the following categories: (i) 

experimental and empirical models such as the 

Gidaspow model[16]  and the Syamlal-O'Brien 

model[17]; (ii) models derived from lattice-

Boltzmann (LB) and direct numerical simulation 

(DNS) methods, such as the BVK drag model[18] and 

the Koch & Hill model[19]; (iii) models based on 

energy minimization multiscale (EMMS) theory, 

such as the EMMS drag model[20]. In this study, we 

primarily use the Gidaspow drag model, which 

applies to most fluidization calculations, the EMMS 

drag model that accounts for gas-solid  flow 

heterogeneity, and the BVK drag model with particle 

size corrections. 

2.2.2.2 Particle collision model 

In gas-solid flow within a fluidized bed, frequent 

particle collisions significantly influence particle 

motion and the flow field distribution. Therefore, 

accurately calculating particle collisions in 

numerical simulations is crucial for predicting gas-

solid flow behavior in the fluidized bed. Currently, 

depending on the method used to handle the 

interparticle interactions, collision models can be 

broadly classified into two main categories. The first 

is deterministic methods, which directly compute 

each particle collision in the computational domain 

during the simulation process, such as the soft sphere 

model used in the CFD-DEM and the coarse-grained 

CFD-DEM method. The second is stochastic 

methods, which do not directly calculate the particle 

collisions but instead introduce the concept of 

collision probability to model them, including the 

solid-phase stress model applied in the MP-PIC 

method and the DSMC method. 
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(1) Soft-sphere model for CFD-DEM and 

coarse-grained CFD-DEM 

The soft-sphere model accounts for inter-particle 

forces during collisions and updates particle 

positions by computing acceleration, velocity, and 

displacement based on these forces. Interactions 

between particles are modeled by incorporating 

elasticity, damping, and tangential sliding 

mechanisms. Elasticity captures particle deformation 

during collisions, damping reflects energy 

dissipation, and sliding models tangential 

interactions. In the DEM, the contact force between 

particles is decomposed into a normal component 

(Fij
n ) and a tangential component (Fij

t ): 

𝐹𝑐 = ∑ (𝐹𝑖𝑗
𝑛 + 𝐹𝑖𝑗

𝑡 )

𝑁

𝑗=1,𝑗≠𝑖

 (12) 

𝐹𝑖𝑗
𝑛 = −(𝑘𝑛𝛿𝑛 + 𝜂𝑛𝛿̇𝑛)𝑛𝑖𝑗 (13) 

𝐹𝑖𝑗
𝑡 = {

−(𝑘𝑡𝛿𝑡 + 𝜂𝑡𝛿̇𝑡)𝑡𝑖𝑗      |𝐹𝑖𝑗
𝑡 | ≤ 𝜇|𝐹𝑖𝑗

𝑛|                       

−𝜇|𝐹𝑖𝑗
𝑛|𝑡𝑖𝑗               |𝐹𝑖𝑗

𝑡 | > 𝜇|𝐹𝑖𝑗
𝑛|                 

 (14) 

where k, η, and δ represent the elastic stiffness, 

damping coefficient, and particle deformation 

displacement, respectively. The subscripts n and t 

denote the normal and tangential directions. The 

tangential contact force is constrained by the product 

of the particle-particle sliding friction coefficient μ 

and the normal contact force. If the tangential force 

exceeds this maximum static friction threshold, 

sliding occurs between the particles, and the 

tangential force is subsequently determined based on 

the sliding friction coefficient. 

In traditional CFD-DEM methods, simulating 

large-scale fluidized bed is often challenging due to 

the large number of particles in the system, leading 

to excessive computational load and difficulties in 

solving the problem. To address this issue, the 

coarse-graining method is introduced to reduce the 

number of particles being computed. In the coarse-

grained CFD-DEM method, multiple real particles 

with identical properties are grouped into a single 

computational particle with an equivalent coarse 

diameter, thereby reducing the number of particles in 

the computational domain by a factor of the cube, 

significantly lowering the computational 

complexity. The core framework of the coarse-

grained CFD-DEM method is the same as that of the 

traditional CFD-DEM method, still using the soft-

sphere model to directly solve the collision process 

between particles, but in the simulation, coarse 

particles are used to replace real particles for more 

efficient computation. The diameter of the coarse 

particle, dcgp, is given by: 
𝑑𝑐𝑔𝑝 = 𝑘𝑑𝑝 (15) 

where k is the coarse-graining coefficient, and dp is 

the diameter of the real particles. 

(2) Solid stress model for MP-PIC 

In the MP-PIC method, a distribution function 

f(xp, vp, mp, Tp, t) is used to describe the distribution 

of particles in the flow field. This equation is a 

function of the particle's spatial position, velocity, 

mass, temperature, and time. The equation is 

expressed as follows: 
𝜕𝑓

𝜕𝑡
+

𝜕(𝑓𝑣𝑝)

𝜕𝑡
+

𝜕(𝑓𝐴)

𝜕𝑣𝑝

=
𝑓𝐷 − 𝑓

𝜏𝐷

+
𝑓𝐺 − 𝑓

𝜏𝐺

 (16) 

where fD and τD represent the particle distribution 

function and the particle collision relaxation time 

under local equilibrium conditions, respectively. 

After a collision, the particle velocity tends to follow 

an isotropic Gaussian distribution. In this state, τG 

and fG denote the relaxation time and the particle 

distribution function, respectively. A is the particle 

acceleration, which is expressed as follows: 

𝐴 =
𝑑𝑣𝑝

𝑑𝑡
= 𝛽(𝑢𝑓 − 𝑣𝑝) −

𝛻𝑝

𝜌𝑝

−
𝛻𝜏𝑝

𝜌𝑝𝜀𝑝

+ 𝑔 +
𝑣̄𝑝 − 𝑣𝑝

2𝜏𝐷

 (17) 

where v̄𝑝 represents the local mass-averaged particle 

velocity, and τp is the solid-phase stress. 

(3) Collision probability model for coarse-

grained CFD-DSMC 

The DSMC method, based on gas molecular 

kinetics[21], does not directly track the motion of each 

particle. Instead, it uses probabilistic methods to 

determine whether collisions occur between particles 

and employs a relatively small number of sampled 

particles to represent a large number of real particles. 

Over a time interval Δtp, the collision probability Pij 

between particle i and particle j within the same grid 

is given by[21,22]: 

𝑃𝑖𝑗 =
𝑤𝜋𝑔0(𝑑𝑝,𝑖 + 𝑑𝑝,𝑗)2|𝐺𝑖𝑗|𝛥𝑡𝑝

4𝑉𝑐

 (18) 

where w is the sampling coefficient; Gij is the relative 

velocity between particle i and particle j; and g0 is the 

equilibrium spherical radial distribution function at 

particle contact. 

This study proposes the coarsed-grained CFD-

DSMC method by coupling the coarse-grained 

model with the DSMC model. While using collision 

probability to model the collision process, the 

method also employs larger computational particles 

in terms of particle size to further reduce the number 

of simulated particles. Additionally, the collision 

probability is modified as follows: 

𝑃𝑖𝑗 =
𝑤𝜋𝑔0(𝑑cg𝑝,𝑖 + 𝑑𝑐𝑔𝑝,𝑗)2|𝐺𝑖𝑗|𝛥𝑡𝑝

4𝑘3𝑉𝑐

 (19) 

2.2.2.3 Particle heat transfer model 

Complex heat transfer between the gas and solid 

phases includes four types of heat transfer: particle-

particle conduction, particle-fluid convective heat 

transfer, radiation heat transfer between particles and 

their surrounding environment, and the heat of 

reaction generated by chemical reactions. Particle-

particle conduction primarily occurs in regions with 

high particle concentration and frequent collisions, 

and, compared to the other types of heat transfer, it 

accounts for a relatively small portion, often being 

neglected. Therefore, this study considers only 

particle-fluid convective heat transfer, radiation heat 

transfer between particles and their surrounding 

environment, and the heat of reaction generated by 

chemical reactions. Under these conditions, the 
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energy conservation equation for particle i is 

expressed as: 

𝑚𝑝,𝑖𝐶𝑝,𝑖

𝑑𝑇𝑝,𝑖

𝑑𝑡
=  𝑄𝑝𝑓,𝑖 + 𝑄𝑟𝑎𝑑,𝑖 − 𝛥𝐻𝑟,𝑖 (20) 

where Cp,i is the specific heat capacity of particle i, 

Tp,i is the temperature of particle i, Qpf,i and Qrad,i 

represent the convective heat transfer between the 

particle and the fluid, and the radiative heat transfer 

between the particle and its surrounding 

environment, respectively. ΔHr,i is the heat of 

reaction. 

2.2.2.4 Chemical reaction model 

The heterogeneous reactions mainly include 

evaporation, pyrolysis, gasification, as well as 

carbonation and calcination reactions of adsorbents. 

For a specific computational particle, the mass 

conservation equation considering the mass changes 

caused by chemical reactions is given by: 

𝑑𝑚𝑝

𝑑𝑡
= ∑ 𝑅𝑠𝑛

𝑁𝑠

𝑛=1

 (21) 

where Ns is the total number of chemical components, 

and Rsn is the mass change rate of component 𝑛 in the 

particle due to chemical reactions. 

3. DISCUSSION AND RESULT 

3.1 PR-DNS modeling of char 
combustion at the microscale 

3.1.1 PR-DNS method validation 

To verify the reliability of the PR-DNS method, 

we compared the drag coefficients of cold particles 

obtained from PR-DNS simulations with the 

empirical correlation proposed by Schiller and 

Naumann[16]. The simulation results show good 

agreement with the empirical formula in Figure 2 (a). 

Regarding char combustion, simulation results were 

validated against experimental data from Makino et 

al.[23] using their experimental configuration, as 

illustrated in Figure 2 (b). The simulations 

demonstrate satisfactory agreement with 

experimental measurements and notably reproduce 

the important phenomenon observed experimentally: 

As temperature increases, the dominant reaction 

shifts. When the CO₂-char reaction becomes 

predominant, it leads to a stepwise decrease in char 

consumption rate. In conclusion, the PR-DNS 

method achieves high precision in resolving forces, 

heat transfer, and mass transfer on particle surfaces, 

rendering it suitable for the full-scale particle direct 

numerical simulations conducted in this study. 

  
(a) (b) 

Figure 2. PR-DNS method validation: (a) drag coefficient, (b) reaction rate. 

3.1.2 PR-DNS on interaction during the 
combustion of two char particles 

This subsection investigates the mechanistic 

effects of interactions between burning particles on 

reaction rates and drag forces. The interparticle 

interactions are decomposed into three components: 

wake effects, direct flame interactions between 

particles, and the nozzle effect arising from 

interparticle convective flow.  

Figure 3 (a) shows the dimensionless drag force 

at different particle center distances and relative 

angles. This drag force is normalized by the drag on 

a single cold-flow particle. Overall, both cold and 

burning char particles show similar trends when 

influenced by neighboring particles. The nozzle 

effect becomes strong only when the line connecting 

the two particles is near 90 degrees to the flow 

direction. This causes the drag force to exceed that 

on a single isolated particle. Figure 3 (b) shows the 

char reaction rates at different angular positions. 

These are for center-to-center distances of l = 1.5, 

2.0, and 3.0 particle diameters (Dp). The reaction 

rates are normalized by the single particle 

combustion rate. This normalization uses identical 

inflow conditions. In all cases except the side-by-

side case at l = 3.0Dp, the carbon consumption rate is 

lower than for an isolated particle. As particle 

separation increases, the particles move from dense 

to sparse arrangements. During this process, the 

reaction rates gradually increase. Meanwhile, the 
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effects of wake flow and trailing flames 

progressively decrease. 

 

  
(a) (b) 

Figure 3. The interaction during the combustion of two char particles: (a) drag coefficient distribution, (b) 

reaction rate distribution. 

When studying how two-particle interactions 

affect reaction rates, we find that the nozzle effect 

has little influence on char reaction rates. Convection 

contributes almost nothing to species transport 

around particles. This is shown in Figure 4 and 

Figure 5. These figures display O₂ and CO transport 

budgets along the axis between side-by-side particles. 

Flame interaction is confined to boundary layers. 

Therefore, no direct flame interaction occurs when 

particle separation exceeds 2Dp. The interactions 

between particles mainly affect forces through 

nozzle effects and wake flows. We also compared the 

drag coefficients of burning and cold-flow particles. 

This comparison shows that particle interaction 

effects on reaction rates cannot be directly applied to 

correct drag coefficients. Particle interactions remain 

dominant in controlling these forces. 

 

 

Figure 4. O₂ transport budget analysis between two char particles 

 

Figure 5. CO transport budget analysis between two char particles 
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3.2 CFD-DEM and coarse-grained CFD-
DEM simulation of particle cluster 
behavior in coal gasification at the 
mesoscale  

The presence of particle clusters in the riser of a 

circulating fluidized bed significantly affects the 

overall performance of the reactor. This study 

conducts in-depth investigations into the behavior of 

particle agglomerates in a riser adopting CFD-DEM 

and coarse-grained CFD-DEM simulations based on 

the Euler-Lagrange framework. 

First, CFD-DEM simulations were performed on 

the characterization of particle clusters in laboratory-

scale risers referring to Carlos Varas et al. [24] and 

compared with the longitudinal distribution curves of 

time-averaged particle concentrations, as shown in 

Figure 6 (a). The simulation results are in good 

agreement with the experimental data. It was 

observed that the overall particle concentration 

within the riser increases, and particles primarily 

accumulating in the lower region of the riser. Figure 

6 (b) further compares the horizontal distribution of 

particle concentration at a gas velocity of 5.95 m/s, 

showing that the predicted results closely match the 

experimental values in both trends and magnitudes. 

 

 

(a) (b) 

Figure 6. (a) Comparison between the predicted particle volume concentration and time-averaged 

measured values; (b) Horizontal distribution of particle volume concentration. 

Furthermore, coarse-grained CFD-DEM is 

adopted to simulate a larger-scale fluidized bed 

reactor. The molar ratios of gas products at the riser 

outlet were statistically analyzed over 15s-30s, as 

shown in Figure 7 (a). It is observed that, although 

there are slight fluctuations in the CO to CO2 ratio, 

the overall gasification product ratio remains 

relatively stable after 15s. Moreover, the outlet 

component data was time-averaged and compared 

with experimental data, as shown in Figure 7 (b). It 

was found that the particle size distribution of the bed 

material and fuel had relatively little impact on the 

component distribution at the outlet. Under all 

operating conditions, the simulated predictions 

closely match the experimental measurements, 

demonstrating that the coarse-grained CFD-DEM 

method can accurately predict the component 

distribution at the outlet. 

  

(a) (b) 
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Figure 7. (a) Temporal variation of gas product ratios at the outlet; (b) Comparison of gas product ratios 

at the outlet under different operating conditions. 

To gain a fundamental understanding of the 

fluidization characteristics within the riser, time-

averaged results are presented in Figure 8. It is 

observed that the horizontal solid-phase 

concentration distribution within the bed exhibits a 

typical ring-core structure. In the vertical direction, 

as the height increases, the particle concentration 

decreases, and the high-concentration region near the 

wall accordingly shrinks. 

 

Figure 8. Time-averaged gas-solid flow 

characteristics: (a) fluid voidage; (b) solid 

horizontal velocity; (c) solid vertical velocity; (d) 

solid velocity vector distribution. 

Figure 9 provides a comprehensive summary of 

the intrinsic mechanisms underlying the temporal 

evolution of particle clusters. The analysis highlights 

the influence of the tail effect of the particle cluster 

on its formation. By tracking the dynamic evolution 

of a typical particle cluster, it was found that the 

characteristics of the cluster exhibit a quasi-periodic 

variation pattern. The changes in the properties of the 

particle cluster are primarily attributed to the 

interactions between the cluster and its surrounding 

environment. The competition and coordination 

between the growth and fragmentation mechanisms 

of the particle cluster lead to a strong correlation 

between its various characteristics (such as area, 

width, and falling velocity). 

 

  

(a) (b) 

Figure 9. Particle cluster behavior: (a) evolution of flow pattern; (b) temporal evolution curve. 

3.3 Multiphase CFD-DSMC simulations 
of biomass chemical looping 
gasification at the macroscale 

To simultaneously meet the requirements of 

both computational time and accuracy, a CG CFD-

DSMC model was developed by coupling the coarse-

graining method with the DSMC method. This 

model enhances computational efficiency while 

ensuring accuracy by employing collision 

probabilities and reducing the number of 

computational particles. The gasifier reactor from the 

dual-fluidized bed gasification system at Zhejiang 

University was selected as the simulation object. 

Figure 10 presents the gas product component 

concentrations at the gasifier outlet, as predicted by 

different simulation methods, alongside 

experimental results. It can be observed that CO and 

H2 account for the majority of the gas composition at 

the gasifier outlet. The relative error between the 

simulated outlet gas concentrations and the 

experimental results is less than 20%, indicating that 

the errors in both methods are within an acceptable 

range. Compared to the MP-PIC method, the CG 

CFD-DSMC method demonstrates superior control 

of both the average and maximum errors in the 

prediction of gas component concentrations at the 

outlet. 
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Figure 10. Concentration of gas product 

components at the outlet simulated by different 

methods. 

Furthermore, based on the 1 MWth pilot-scale 

BFB-CFB dual-fluidized bed system, a comparative 

simulation analysis of the biomass chemical-looping 

gasification process was conducted using the CG 

CFD-DSMC method proposed in this study and the 

traditional MP-PIC method. Figure 11 presents the 

average gas product component concentrations at the 

gasifier outlet. It can be observed that the 

computational accuracy and efficiency of the two 

models are approximately equivalent. 

 

Figure 11. Gas product component 

concentrations at the gasifier outlet simulated by 

MP-PIC and CG CFD-DSMC method. 

After ensuring the accuracy and efficiency of the 

model, a simulation study on the operational 

optimization of the structurally optimized biomass 

chemical-looping gasification system was 

conducted. Figure 12 presents the axial distribution 

characteristics of the biomass particle heat transfer 

coefficient (HTC) under different average particle 

sizes. The results indicate that the HTC of biomass 

particles is relatively high near the feed inlet and 

gradually decreases along the axial direction. This is 

primarily due to the continuous reduction in the 

temperature gradient between the biomass particles 

and the surrounding environment during the heat 

exchange process after the particles enter the 

gasifier. It is noteworthy that although the 

distribution trend of HTC is similar across different 

particle size conditions, the average absolute value 

of HTC decreases as the absorber's average particle 

size increases, suggesting a negative impact on the 

heat transfer process. 

 

Figure 12. Effect of the average particle size on 

the heat transfer coefficient of biomass particles. 

Figure 13 (a) illustrates the effect of biomass 

feed inlet height on the gas product composition. As 

the feed inlet height increases, the concentrations of 

CO and CO2 in the outlet gas gradually increase, 

while the H2 concentration significantly decreases. 

Simultaneously, the height of the gas-solid reaction 

zone increases with the feed inlet height, leading to 

reduced contact efficiency between CO2 and bed 

material particles, thus affecting the carbonation 

reaction. After entering the gasifier, biomass 

particles undergo a series of physical and chemical 

transformations, causing a reduction in their mass. 

Some biomass particles are carried away by the gas 

flow after staying in the gasifier for a certain period. 

Therefore, a lower feed inlet height can extend the 

residence time of biomass particles in the gasifier, 

enhancing the gas-solid mixing effect and improving 

carbon conversion efficiency. Figure 13 (b) shows 

the effect of feed inlet height on LHV and CGC, 

where both LHV and CGC decrease as the feed inlet 

height increases, negatively impacting gasification 

efficiency. 
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(a) (b) 

Figure 13. Effect of biomass feed inlet height on gasification performance: (a) gas product components at 

the outlet; (b) LHV and CGC. 

3.4 Industrial-scale MP-PIC simulation 
of coal pyrolysis and combustion 
staged conversion 

The numerical model is extended to 150 MWe 

industrial-scale equipment and verifies the 

applicability of the model at industrial scale by 

simulating the cold and hot states of large existing 

equipment at Shanxi Power Plant. Figure 14 presents 

a comparison between the numerical simulation 

results and experimental data for the time-averaged 

normalized molar fractions of each gas component at 

the cyclone separator outlet of the pyrolysis furnace. 

The error between the simulation results and 

experimental data for CH4 and H2 is within 5%, while 

for CO2, CO, and C2H6, the error is within 20%, 

which is acceptable in engineering applications.  

 

Figure 14. Comparison of simulated results and 

experimental data for the molar fractions of each 

gas component at the cyclone separator outlet of 

the pyrolysis furnace over time. 

Figure 15 presents the simulation results, 

experimental data, and relative errors for the time-

averaged syngas density at the cyclone separator 

outlet of the pyrolysis furnace at different operating 

temperatures. The trend of gas component content 

variation with temperature is consistent with 

engineering practice, and the simulation results 

closely match the experimental data. Monitoring the 

time-averaged syngas density at the pyrolysis 

furnace outlet and converting it to the density under 

standard conditions, the error in syngas density is 

within 3% at all temperatures. Overall, the model is 

reliable for predicting the flow regime and thermo-

chemical properties of the circulating fluidized bed 

coal classification pyrolysis combustion integrated 

multi-product system. 

 

Figure 15. Comparison of time-averaged syngas 

density at the cyclone separator outlet of the 

pyrolysis furnace at different operating 

temperatures. 

Based on the 150 MWe large-scale coal 

pyrolysis combustion classification conversion dual 

fluidized bed system at the Shanxi Pinglu Power 

Plant, the gas-solid flow field information inside the 

furnace was obtained using a cold-state model. 

Figure 16 shows the transient particle distribution in 

the system at different primary air velocities in the 

combustion furnace, with particle residence time 

represented by color. It can be observed that as the 

primary air velocity in the combustion furnace 

increases, the load on the four cyclone separators of 

the combustion furnace intensifies. Particularly at 15 

m/s, a large number of particles clog the return feed 

pipes connecting the cyclone separators to the 

combustion furnace's bottom, which will impact the 

normal operation of the system. In contrast, the 

particle amount in the two small cyclone separators 

on the combustion furnace side connected to the 

pyrolysis furnace shows minimal variation. 

Therefore, changes in the primary air velocity of the 
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combustion furnace have a relatively small effect on 

the operation of the pyrolysis furnace side. 

   

(a) (b) (c) 

Figure 16. Transient particle distribution in the system at different primary air velocities in the combustion 

furnace: (a) 5 m/s; (b) 10 m/s; (c) 15 m/s. 

Next, the temperature, gas composition, and 

particle distribution were obtained using a hot-state 

model to provide theoretical support for the system’s 

design modifications. After the hot-state model 

reached dynamic stability, the distribution of particle 

volume fraction in the system was obtained, as 

shown in Figure 17 (a). It can be seen that the particle 

accumulation at the inclined surface of the feed leg, 

which was difficult to avoid in the cold-state model, 

has disappeared in the hot-state model, and the height 

of the high particle volume fraction area in the feed 

leg has decreased. The operation of the return feeders 

is stable, with sufficient particle accumulation 

effectively isolating the gas environments of the two 

furnaces, enabling material circulation between the 

furnaces while preventing gas backflow. The mass 

flow rates of syngas components at the pyrolysis 

furnace cyclone separator outlet were extracted, and 

the time-averaged molar fractions of the stable 

pyrolysis furnace circulating syngas components are 

shown in Figure 17 (b). The highest proportion is 

CH4, close to 50%, followed by H2 at about 25%, and 

then CO2, CO, and C2H6 in decreasing order. 

Compared to the 1 MWth coal dual fluidized bed 

pyrolysis combustion classification conversion pilot 

plant, changes in the circulating syngas components 

were observed after the pyrolysis furnace stabilized. 

This suggests that compared to the pyrolysis furnace 

with single-sided coal feeding and sand as bed 

material, the system in this chapter involves some 

coal being fed directly from the combustion furnace 

and using coal particles generated ash as bed 

material, which led to significant changes in several 

characteristics. 

  

(a) (b) 

Figure 17. (a) The distribution of the time-averaged particle volume fraction at each central cross-section; 

(b) the time-averaged molar fractions of each gas component at the cyclone separator outlet of the pyrolysis 

furnace.

4. CHALLENGES AND OUTLOOK 

The various multiscale modeling methods 

reviewed in this paper each have distinct advantages 

and limitations depending on the scale and 

complexity of the system. At the microscale, the PR-

DNS delivers unparalleled accuracy in resolving 

particle–fluid interactions and surface transport 

phenomena, yet its exorbitant mesh requirements 

confine it  to small domains. Moreover, methods 

such as traditional CFD-DEM and its coarse-grained 

variant alleviate this burden by coupling continuum 

fluid solvers with discrete particle tracking, 

achieving reasonable precision while remaining 
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computationally tractable. For systems dominated by 

gas-phase transport, the coarse-grained CFD-DSMC 

and MP-PIC approaches scale efficiently to larger 

volumes, enabling practicale engineering 

simulations where computational efficiency 

becomes paramount. 

A key challenge lies in the trade-off between 

model accuracy and computational efficiency. As the 

complexity of the simulations increases, the 

computational demand grows significantly. High-

performance computing (HPC) and artificial 

intelligence (AI) integration offer great potential to 

accelerate multiscale simulations. AI can assist in 

optimizing models, improving computational 

strategies, and automating parameter adjustments. 

However, integrating AI with traditional physical 

models remains a challenge. 

Looking ahead, a unified framework for 

multiscale coupling is essential. Such a framework 

would facilitate seamless integration across different 

scales, enhancing both accuracy and efficiency. 

Additionally, building a platform that combines 

data-driven approaches with physical modeling will 

be critical in advancing the next generation of 

simulation tools. This unified approach will offer 

more accurate, scalable, and efficient simulations, 

crucial for tackling complex engineering systems in 

the future. 
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