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ABSTRACT
We present a workflow for the unsupervised

clustering of fluid–particle flows into distinct com-
partments based on open-source tools. Our aim is
to enhance the understanding of complex multiphase
flow systems - prevalent in many chemical and bio-
chemical reactors - by using models consisting of
such compartments. The proposed methodology in-
tegrates computational fluid dynamics (CFD) simula-
tions with unsupervised machine learning (i.e., clus-
tering algorithms) to identify coherent flow regions
(i.e., compartments) without prior labelling. Our
workflow is fully automated and designed for repro-
ducibility, with a modular structure that allows for
an easy adaptation to various flow systems. The res-
ults demonstrate that our approach can successfully
capture essential flow features and partition the do-
main into meaningful compartments. This facilitates
direct use in compartment models, which reduces
computational costs in larger-scale simulations. Our
findings suggest that unsupervised machine learning
algorithms are mature enough to simplify complex
multiphase systems in a largely automated fashion,
making them a valuable tool for both academic re-
search and industrial applications.

Keywords: CFD, multiphase, compartment mod-
elling, bioreactor, clustering, unsupervised learn-
ing

NOMENCLATURE
C [−] cluster
Da [−] Damköhler number
H [m] channel height
JC [−] clustering objective for the

k-means algorithm

JV̇ [−] optimization objective flow
rate adaption

L [m] channel length
S [ kmol

m3 s ] additional sources or sinks
VR [m3] volume of compartment
c [kmol/m3] concentration of species
c∗ [−] dimensionless concentration

of species
k [s−1] reaction rate constant
kLa [s−1] volumetric mass transfer coef-

ficient
nc [−] number of compartments
nk [−] number of clusters
nx [−] number of datapoints
ncells,min [−] minimum number of CFD

cells required per cluster
r [ kmol

m3 s ] reaction rate
v1 [m/s] velocity of the moving top

wall
vmax [m/s] maximum velocity of the flow

profile
V̇ [m3/s] flow rate
V̇ [m3/s] flow rate matrix

V̇ ′ [m3/s] optimized flow rate matrix
v [m/s] velocity vector with the com-

ponents v1 and v2
x [−] feature vector from data mat-

rix
α [−] volume fraction
λ [−] regularization parameter
µ [−] cluster average
νthresh [−] threshold for reassignment

condition based on volume
τR [s] residence time
ξ∗

1
[−] dimensionless axial coordin-

ate
ξ∗

2
[−] dimensionless transverse co-

ordinate
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C [−] set of clusters
Ci [−] cluster subset of X
X [−] data set

Subscripts and Superscripts
in at the inlet
out at the outlet
φ for each phase

1. INTRODUCTION
Accurate prediction of large-scale multi-species

gas-liquid bioreactor performance is essential for
advancing biotechnological applications. For ex-
ample, Cupriavidus necator bacteria within mul-
tiphase bioreactors may produce valuable products
such as the polymer Polyhydroxybutyrate (PHB) [1],
or food proteins. These systems often involve two-
phase flows, in which the dissolution of key gases
like O2, CO2, and H2 significantly impacts reactor
performance. However, the complexity of these sys-
tems requires advanced modelling techniques to cap-
ture the interplay between flow dynamics and chem-
ical reactions.

Despite progress in computational fluid dynam-
ics (CFD) and compartment modelling, several gaps
in our scientific understanding of such reactors re-
main. Unsupervised machine learning algorithms
can assist in finding patterns in the large datasets gen-
erated by CFD simulations. For instance, Laborda
et al. [2] used unsupervised clustering on CFD and
experimental data to identify flow regimes in biore-
actors. While their custom k-means algorithm en-
sured spatial continuity and optimal compartment
count, the study focused solely on regime identific-
ation without integrating chemical reaction networks
(CRNs), or predicting reactor performance. Le Nep-
vou de Carfort et al. [3] proposed a fully automated
CFD-based method for generating 3D compartment
models using structured grids. Although their ap-
proach enabled real-time bioreactor simulations, it
was constrained to Cartesian grids and lacked val-
idation for non-ideal geometries. Savage et al. [4]
combined CFD, high-dimensional design spaces, and
Bayesian optimisation to improve reactor geometries
with respect to flow behaviour and mixing character-
istics. However, their work focused on the reactor
design and did not address (bio-)chemical reaction
kinetics, or propose a method to create to compart-
ment models. Savarese et al. [5] developed a CRN
generation method using unsupervised clustering and
graph algorithms for combustion in CFD simula-
tions. While effective for predicting NOx emissions,
their approach was limited to single-phase systems
and consequently an application to multiphase biore-
actors or biochemical reaction networks cannot be
realized. Other studies, such as Tajsoleiman et al. [6]
and Delafosse et al. [7], introduced automated CFD-
based zoning and compartment models for stirred
bioreactors. However, these methods were either
geometry-specific, lacked spatial continuity enforce-

ment, or did not integrate biochemical reactions or a
fully automated zoning algorithm.

1.1. Goals of our Contribution
Given the limitations of CFD simulations in

modelling detailed chemical reactions, our present
study aims to identify meaningful compartments,
and subsequently solve the equations that govern the
resulting compartment model (CM). By leveraging
analytical solutions, we validate the CM for flows
between two infinite plates, including single-phase
flow with reactions and two-phase flow with mass
transfer.

Therefore, we utilise the codebase from Sav-
arese et al. [5] and developing it further into
our own tool box called CLARA (CLustering Al-
goRithm Austria). To perform the clustering and
compartment generation, simulation data is needed.
We added two new simulation tool options from
which the data can be read by CLARA. These tools
are (i) OpenFOAM®, a classic open-source CFD
tool, and (ii) SimVantage®, a commercial bioreactor
CFD simulation tool developed by the SimVantage
GmbH. The SimVantage® software uses the Lattice
Boltzmann method (LBM) for simulating complex
flows, including multi-phase and multi-component
systems. With the integration of these tools, we have
two powerful options for simulating complex flows
in bioreactors, allowing us to accurately capture the
dynamics of gas-liquid interactions therein. Our
clustering and compartmentalization tool, CLARA,
will soon be available as an open-source tool.

Our long-term vision is to develop a fast and re-
liable tool for optimising bioreactor reactor design,
akin to the approach presented in [4], which showed
that it is crucial to scan the design space and find
the “best” geometrical design of a device. The tool
will be useful for the process optimization of the gas-
fermentation bioreactor as shown in [1]. Due to regu-
latory restrictions and safety issues, which arise due
to the highly explosive medium (hydrogen and oxi-
gen), it is vital to have an excellent understanding of
transport phenomena in bioreactors to avoid explos-
ive gas mixtures. A secondary vision is to develop
a physics-informed model capable to be used for the
design of model-based automatic control algorithms,
and which can be exploited to optimise reactor per-
formance during operation. This is particularly im-
portant for bioreactors, as they are complex systems
with many variables that need to be controlled.

2. METHODS
In this section, we describe the methods used

to achieve the goals outlined in the previous
chapter. We begin by discussing the integration of
OpenFOAM® and SimVantage®, followed by a de-
tailed explanation of the clustering process, includ-
ing feature selection and graph reassignment. We
then present the compartment model equations and
the optimisation process for inconsistent flow rates.
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Specifically, the overall clustering process involves
reading in field values, calculating volume flow rates
over faces, and selecting relevant features for the core
clustering step. Once the clustering is performed,
graph reassignment ensures spatial continuity of the
clusters. After the clustering is completed, we will
call these clusters compartments as each represents a
theoretical compartment in a reactor. The next step
is to calculate the compartment attributes such as
volume, flow rate matrix, temperature and, for mul-
tiphase systems, the volumetric mass transfer coef-
ficient (kLa). If mass balance inconsistencies are
detected, an optimisation step is applied to correct
them. Finally, boundary conditions for the compart-
ment model (CM) are selected, including flow rates
and concentrations, which are then passed to the CM
solver. In order to ensure the quality of the code, ana-
lytical solutions are used to verify the results. Spe-
cifically, we test the performance of the CM with
simple chemical reactions and mass transfer scen-
arios.

2.1. Integration of OpenFOAM® and
SimVantage®

The integration of OpenFOAM® and
SimVantage® with CLARA is achieved through a
custom Python interface. This interface allows for
seamless communication between the two software
packages (i.e., OpenFOAM® or SimVantage®

and CLARA), enabling the transfer of data and
results. For the LBM method (which is used in
SimVantage®), face fluxes must be calculated as a
post processing step to obtain the volumetric flow
rates as these are not used in a classical LBM-based
simulation. This is especially critical for moving
boundaries, such as the stirrer, where some cells are
partly solid and partly fluid.

2.2. Clustering
To perform clustering, we must carefully se-

lect the features that represent the underlying phys-
ics of the system. These features are derived from
CFD simulations and typically include flow-relevant
quantities such as velocity, residence time, or turbu-
lence intensity. It is recommended not to use con-
centration as a feature, since we simulate only until
the flow reaches a quasi-steady state, long before the
concentration field has fully evolved. This is particu-
larly relevant in bioreactors, where bio-reactions in-
volving bacteria often take several days to produce
measurable outputs due to the inherently slow bio-
logical processes. Simulating such long timescales
with CFD alone would be computationally prohibit-
ive. Instead, we simulate the flow dynamics until a
statistically steady state is reached and then use the
compartment model (CM) to predict long-term con-
centration behaviour. This approach maintains accur-
acy while reducing computational cost. To enhance
the clustering, it is also useful to include statistical
measures such as the mean and standard deviation of

time-dependent features, allowing the method to cap-
ture the unsteady or turbulent characteristics of the
flow.

The core clustering step uses the k-means al-
gorithm, which partitions the dataset into nk distinct,
non-overlapping clusters. The dataset consists of
nx feature vectors X = {x1, . . . , xnx

}. Each cluster
Ci ⊆ X, with i = 1, . . . , nk, is a subset of the data.
The algorithm assigns each feature vector x j to one
of the clusters via the mapping x j 7→ Ci. Each cluster
has a centroid µ

i
, defined as the mean of all feature

vectors in that cluster µ
i
= 1
|Ci |

∑
x j∈Ci

x j. where |Ci|

denotes the number of elements in Ci.
Each vector is then assigned to the cluster with

the nearest centroid (in terms of Euclidean distance).
The centroids are recalculated iteratively until the as-
signments no longer change, indicating convergence.
The k-means algorithm minimizes the following ob-
jective function:

JC =

nk∑
i=1

∑
x j∈Ci

∥x j − µi
∥2. (1)

To ensure cluster connectivity, a graph reassign-
ment algorithm is applied. This algorithm checks
each cluster for disconnected components and reas-
signs them based on a connectivity criteria (e.g. spa-
tially next cluster). Additionally, thresholds can be
defined to trigger reassignment. For example, a com-
partment must contain a minimum number of CFD
cells (see Eq. 2) or a minimum volume (see Eq. 3).
The reassignment conditions are:

reassign(Ci) ⇐⇒ |Ci| < ncells,min (2)

reassign(Ci) ⇐⇒
∑
x j∈Ci

V(x j) < νthresh ·Vtotal (3)

After clustering is completed, each cluster is
converted into a compartment, as compartments can
hold additional attributes. The number of clusters nk
is therefore equal to the number of compartments nc.

2.2.1. Mass Conservation and Flow Balance

For a network of compartments, the flow rate
matrix V̇ represents the flow rates between the com-
partments via a two-dimensional matrix. These flow
rates are derived by summing the volume flows ex-
tracted from the simulation data. Let V̇

in
and V̇

out
represent the external inflows and outflows, respect-
ively, for each compartment. The system must satisfy
mass conservation, which is expressed mathematic-
ally in Eq. 4:

nc∑
j=1

V̇i j −

nc∑
j=1

V̇ ji + V̇ini − V̇outi = 0 ∀i (4)

In this equation, V̇i j represents the flow rate from
compartment i to compartment j, while V̇ ji denotes
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the flow rate from compartment j to compartment i.
The terms V̇ini and V̇outi correspond to the external
inflow and outflow rates for compartment i, respect-
ively. Finally, nc is the total number of clusters in
the system. This equation ensures that the net flow
into each compartment, considering both internal and
external flows, is zero. It is important to note that
for two-phase systems, achieving mass conservation
can be challenging, as the mass transfer between the
phases must be considered.

2.2.2. Optimisation of Flow Rates

To address inconsistencies in flow rates, an op-
timisation process is applied. The objective is to ad-
just the flow rate matrix V̇ to minimise deviations
from the initial values while ensuring mass conser-
vation. The optimisation problem is defined by the
objective function in Eq. 5:

JV̇ =

nc∑
i, j

(V̇ ′i j − V̇i j)2 + λ

nc∑
i, j

V̇ ′2i j (5)

In this equation, V̇ ′i j represents the optimised flow
rates, which are adjusted to satisfy mass conserva-
tion while minimising deviations from the initial flow
rates V̇i j. The parameter λ is a regularization term
that penalizes large flow rates, thereby preventing ex-
cessive deviations and ensuring a more stable solu-
tion. A rule of thumb for estimating this regulariz-
ation term is λ ≈ 1

∥V̇∥2 . This approach ensures that

the optimisation process maintains the integrity of
the flow distribution across the clusters.

The optimisation is subject to the mass balance
constraint, as shown in Eq. 6:

nc∑
j=1

V̇ ′i j −

nc∑
j=1

V̇ ′ ji + V̇ini − V̇outi = 0 ∀i (6)

This constraint ensures that the optimised flow rates
satisfy mass conservation for each cluster. The terms
in Eq. 6 are defined similarly to those in Eq. 4.

The optimisation problem is solved using Se-
quential Least Squares Quadratic Programming
(SLSQP), an iterative method suitable for con-
strained optimisation. The solution is bounded to
ensure positive flow rates. Additionally, flow rates
which are under a certain threshold will be kept/set
to zero, so that it is ensured that spatially not connec-
ted compartments remain not connected. This ap-
proach ensures minimal adjustments to the flow rates
while maintaining the integrity of the flow distribu-
tion across the clusters.

2.3. Compartment attributes

The next step is to calculate the compartment at-
tributes like volume, temperature, and also for a mul-
tiphase system the kLa value. For a two phase system
the volume of the phase is used as the compartment
volume (αφ · V).

2.4. Compartment Model Equations
In the context of a bioreactor, k-Means can

be used to cluster different regions based on cer-
tain characteristics, such as concentration or reaction
rates, to form different compartments which can then
be solved. This is very similar to a Chemical Reactor
Network (CRN), or as we call it, the compartment
model.

The compartment model (CM) simplifies a com-
plex system by dividing it into compartments, each
representing a distinct region or phase. The CM
equations describe the mass balance of species within
each compartment, accounting for inflows, outflows,
reactions, and other processes. The governing equa-
tion for the liquid phase is given in Eq. 7:

dcφ,i, j
dt
=

∑nc
k V̇φ,i,k→ jcφ,i,k −

∑nc
k V̇φ,i, j→kcφ,i, j

VR,φ, j

+
V̇inφ,i, j cinφ,i, j − V̇outφ,i, j coutφ,i, j

VR,φ, j
+ rφ,i, j + S φ,i, j

(7)

In this equation, cφ,i, j represents the concentration of
species i in compartment j. The terms V̇φ,i,k→ j and
V̇φ,i, j→k denote the flow rates of species i into and out
of compartment j, respectively. These flow rates ac-
count for the transport of species between compart-
ments. The external inflow and outflow rates of spe-
cies i for compartment j are represented by V̇inφ,i, j and
V̇outφ,i, j , respectively. The volume of compartment j
is denoted by VR,φ, j, which is used to normalize the
mass balance equation. The reaction rate of species i
in compartment j is represented by rφ,i, j, which ac-
counts for the chemical reactions occurring within
the compartment. Finally, S φ represents additional
sources or sinks, such as mass transfer from other
phases. This term ensures that all external contribu-
tions to the species concentration are included in the
model.

The CM equations are solved numerically using
standard ODE solvers provided by the SciPy Python
library. This approach allows for an accurate approx-
imation of the system’s dynamic behavior and sup-
ports efficient integration of the compartment model
under various flow and reaction conditions.

2.5. Verification
To test the implementation and results of the

compartment model, we verify it against an analyt-
ical solution. This analytical solution represents flow
between two infinite plates with a simple first-order
chemical reaction. The verification process ensures
that the CM accurately predicts the concentration
profiles and flow dynamics under controlled condi-
tions.

The analytical solutions for plug flow, Couette
flow, and Poiseuille flow provide benchmarks for
evaluating the CM’s performance. These solutions
are derived based on non diffusive steady-state as-
sumptions and specific velocity profiles. By com-
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paring the CM results to these analytical solutions,
we can assess the accuracy and reliability of the
model. Additionally, the verification process helps
to identify potential limitations or areas for improve-
ment in the CM implementation.

2.5.1. Analytical Solution for Plug Flow

For a first-order chemical reaction in a plug flow
between two infinite plates, the concentration profile
can be derived under steady-state conditions. The
velocity profile is uniform (v1 = vmax, v2 = 0), and
the concentration decreases exponentially along the
flow direction. Specifically, the resulting concentra-
tion profile is given by:

c∗(ξ∗1) = e−Daξ∗1 (8)

where Da = kL
vmax

is the Damköhler number, and
ξ∗1 =

ξ1
L is a dimensionless axial coordinate.

2.5.2. Analytical Solution for Couette Flow

In Couette flow, the velocity profile is linear and
given by v1 = vmax

ξ2
L , v2 = 0, where vmax is the ve-

locity of the moving top wall, ξ2 is the dimension-
less transverse coordinate, and L is the characteristic
length. The mean residence time can be approxim-
ated as τR =

L
v , and for a linear velocity profile we

get v = vmax
2 . Substituting this, the mean residence

time becomes τR =
L

2vmax
. Therefore, the Damköhler

number is calculated as Da = 2kL
vmax

. The concentra-
tion profile for a first-order reaction is expressed as:

c∗(ξ∗1, ξ
∗
2) = e

−Da
ξ∗1
ξ∗2 (9)

where ξ∗1 = ξ1/L and ξ∗2 = ξ2/H are the dimension-
less axial and transverse coordinate, respectively.

2.5.3. Analytical Solution for Poiseuille Flow

In a Poiseuille flow, the velocity profile is para-

bolic and given by v1 = vmax

(
1 −
(
ξ2

H/2

)2)
, v2 = 0,

where vmax is the maximum velocity at the centerline,
ξ2 is the dimensionless transverse coordinate, and H
is the channel height. The mean velocity for this pro-
file is v1 = 2/3vmax. Using this, the Damköhler num-
ber is evaluated as Da = k 3L

2vmax
. The concentration

profile for a first-order reaction is given by:

c∗(ξ∗1, ξ
∗
2) = e

−Da
ξ∗1

1−ξ∗2
2 (10)

where ξ∗1 and ξ∗2 are the dimensionless axial and
transverse coordinate, respectively.

3. RESULTS
The results of this study demonstrate the capab-

ility of the compartment model (CM) to accurately
reproduce the reaction dynamics of a simple tubular
reactor. The Fig. 1 shows the concentration profile
of a reactor with Poiseuille flow and a Darmköhler
number of 1.
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Figure 1. Analytical concentration profile for
Poiseuille flow for a simple first-order chemical
reaction.

3.1. Importance of Feature Selection
Feature selection plays a crucial role in the clus-

tering process, as it directly determines how the com-
partments are formed and how well they capture the
relevant dynamics of the system. To illustrate this,
we compare two clustering results, each using six
compartments: one based on concentration as the
feature, see Fig. 2, and the other based on velocity,
see Fig. 3. The clustering based on concentration
yields a significantly lower error of 16% compared to
29% when using velocity, indicating that it provides a
better representation of the system in this case. How-
ever, while the performance is better, concentration
is very difficult to obtain from the simulation. In
practical CFD setups, especially those limited to the
flow field, the full concentration profile may not be
available or may require prohibitively long simula-
tion times to resolve accurately. This highlights a
key trade-off: the most informative features may not
be accessible in realistic scenarios. Moreover, in this
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Figure 2. Clustering solution with six clusters and
the concentration as feature vector.

simplified analytical test case, only a limited number
of features are available, which further complicates
the selection process. The lack of diverse or rich fea-
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ture data restricts the clustering performance and the
ability to tailor compartments to specific physical be-
haviours. Therefore, while the example shows that
using concentration leads to better clustering quality,
it also underlines the challenges in feature availab-
ility and extraction, particularly when applying this
method to more complex or computationally expens-
ive systems.
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Figure 3. Clustering solution with six clusters and
the velocity as feature vector.

3.2. Compartment Model Performance
Fig. 4 illustrates the absolute error of the pre-

dicted total mole flow compared to the analytical
solutions for three different flow profiles: plug flow,
Couette flow, and Poiseuille flow. These profiles
serve as benchmarks for evaluating the CM’s per-
formance. For this comparison, the feature vectors
used in the clustering included both the velocity and
the concentration field.

0 20 40 60 80 100
10−1

100

101

102

ncluster [−]

E
rr

or
[%

]

cplug f low
cpoiseuille
ccouette

Figure 4. Absolute error of the CM solution com-
pared to the analytical solution for plug flow, Cou-
ette flow, and Poiseuille flow.

The results show that as the number of compart-
ments increases, the CM solution converges to the
analytical solution, i.e., the error vanishes. This con-
vergence highlights the ability of the CM to capture

the essential flow and reaction characteristics of the
system. For all three flow profiles, the error decreases
significantly with an increasing number of compart-
ments, demonstrating the robustness of the CM ap-
proach.

The plug flow results exhibit the lowest error,
as the uniform velocity profile simplifies the flow
dynamics. In contrast, the Couette and Poiseuille
flows, which involve more complex velocity profiles,
show slightly higher errors. These results were ob-
tained without any advanced feature selection for
clustering, meaning the compartments were gener-
ated based solely on basic flow properties. Despite
this, the CM performed well, suggesting that even a
straightforward clustering approach can yield mean-
ingful results. Future work could explore the impact
of incorporating additional features, such as turbu-
lence intensity or residence time, to further enhance
the accuracy and efficiency of the CM.

4. CONCLUSION
The results presented in our paper demonstrate

the effectiveness of the compartment model (CM).
We established a seamless, automated workflow by
integrating the OpenFOAM® and SimVantage® flow
solvers with our in-house tool called CLARA (CLus-
tering AlgoRithm Austria). These CFD tools provide
flow field data, which CLARA uses for unsuper-
vised clustering via k-means and graph-based reas-
signment to identify spatially coherent compartments
that mechanistically represent the reactor’s flow char-
acteristics. Based on these compartments, CLARA
calculates compartment volumes, in- and outflows,
and inter-compartment flow rates to generate the
CM. An optimization step ensures mass conserva-
tion. This enables an efficient and mechanistic pre-
diction of concentration fields and reactor behaviour
using reduced-order models.

The verification of the CM against analytical
solutions for plug flow, Couette flow, and Poiseuille
flow confirmed its accuracy and reliability. The cor-
responding CMs successfully captured the concen-
tration profiles and flow dynamics under various con-
ditions, with errors below 1% for all flow profiles.
These results highlight the potential of the CM as a
fast and reliable tool for optimising reactor design
and performance.

Future work will focus on extending the CM to
handle more complex two phase system and com-
plex chemical reactions. Additionally, efforts will
be made to improve the feature selection with intelli-
gent systems, enabling its application to larger-scale
systems. The development of a physical-informed
model for reactor control will also be explored, with
the goal of optimising reactor performance under dy-
namic operating conditions.
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