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ABSTRACT
Accurate prediction of heat transfer between

solid particles and the surrounding gas is essential
in discrete element method - computational fluid dy-
namics (DEM-CFD) simulations. Typically, these
methods rely on empirical correlations of the Nusselt
number (Nu) that provide only an averaged estim-
ation of the heat transfer between the particles and
the fluid. In light of this, we present in this paper
a data-driven surrogate model that captures the local
heat transfer on the particle surface and integrates it
into the DEM-CFD simulation framework. The de-
veloped model is a Gaussian process (Nu-GP) that is
trained using a database of 16 2D direct numerical
simulations (DNS) of convective heat-transfer in air
flow around an isolated circular particle with Reyn-
olds numbers in the range 100 ≤ Re ≤ 400. The
model uses the inlet Reynolds number and the local
radial angle θ on the surface of the particle as in-
puts to predict the local Nusselt number. Comparis-
ons to the DNS results demonstrate the ability of the
Nu-GP to accurately predict the local Nusselt within
the trained range. Furthermore, we show the Nu-GP
model can be integrated into DEM-CFD and resolves
the heat transfer on the particle surface with DNS ac-
curacy with a negligible increase of computational
cost compared to mean Nusselt correlations.

Keywords: DEM-CFD, Gaussian processes, lat-
tice Boltzmann, Nusselt number

NOMENCLATURE
A [m2] area
D [m] particle diameter
F [N] force
Mw [kg/mol] molecular weight
Ny,Nz [−] number of grid points

R [J/kg · mol]universal gas constant
T [K] temperature
Nu [−] Nusselt number
Pr [−] Prandtl number
Re [−] Reynolds number
D [−] training dataset
K [−] GP covariance
N [−] Gaussian distribution
cp [J/kg · K] specific heat capacity
l [m] length
p [−] probability
ph [Pa] hydrodynamic pressure
pt [Pa] thermodynamic pressure
I [−] identity matrix
X [−] training input matrix
u [m/s] velocity
x [−] training input vector
y [−] training output vector
ϵ [−] noise
λ [W/m · K] thermal conductivity
µ [Pa · s] dynamic viscosity
ρ [kg/m3] density
σ2 [−] variance
θ [◦] radial angle
ϕ [−] GP hyperparameters vector
τ [Pa] viscous stress tensor
ε [−] porosity
ξ [−] GP mean

Subscripts and Superscripts
ref, surf reference, surface
opt optimal solution
b body
t time
¯(·) spatial mean
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1. INTRODUCTION
Particle-resolved direct numerical simulations

(DNS) enable accurate predictions of heat transfer
between solid particles and surrounding gas. These
simulations require a finely resolved computational
grid, at least an order of magnitude smaller than the
(average) diameter of the particles. However, the
substantial computational cost of DNS renders its
application to flow fields in packed-bed configura-
tions infeasible for many real-world scenarios. In-
stead, such systems are typically simulated using
non-particle-resolved approaches, such as the dis-
crete element method coupled with computational
fluid dynamics (DEM-CFD) [1].

The computational cells in DEM-CFD are typ-
ically larger than the individual particles. Therefore,
the heat transfer within the cell is approximated using
spatially averaged values. To account for thermal ef-
fects, empirical correlations of the Nusselt (Nu) num-
ber are employed [2, 3]. While this approach enables
faster simulations, it comes at the cost of reduced
accuracy compared to DNS. To bridge this gap, the
use of locally resolved Nusselt correlations in DEM-
CFD has been proposed that provide more detailed
thermal information within the computational cell
[4]. Although many studies have investigated the
local heat transfer at the particle surface [5, 6], relat-
ively few have derived local models or correlations.

Notably, Haeri and Shrimpton [7] derived a cor-
relation for the calculation of the local Nusselt num-
ber around a circular cylinder using trigonometric
series with 13 coefficients. Each series is mod-
elled as a 5th order polynomial in Reynolds (Re)
and Prandtl (Pr) numbers within the ranges 10 ≤
Re ≤ 250 and 0.1 ≤ Pr ≤ 40. Similarly, Kravets
and Kruggel-Emden [8] investigated local heat trans-
fer and provided Nusselt correlations corresponding
to Pr = 1 for forced convection around an isolated
sphere and random particle packings. Their correla-
tions are applicable from low to moderate Reynolds
numbers, i.e., 20 ≤ Re ≤ 240 for the single particle
case, and 20 ≤ Re ≤ 100 for the packed-bed cor-
responding to porosity ε ranging from 0.6 and 1.0.
To the best of our knowledge, no further local Nus-
selt number models or correlations for flow fields
around solid bodies have been reported in the liter-
ature. Yet, we note that the local correlations have
been developed in related applications, such as the
local Nusselt correlations for circular impinging jet
over a plate [9], and for nanofluids in circular hori-
zontal tubes [10].

While the majority of heat transfer studies have
relied on nonlinear regression to fit power-law Nus-
selt correlations, other machine learning methods
have been also explored. For example, Urbina et
al. [10] employed genetic programming to discover
non-trivial local Nusselt correlations for nanofluids.
Kahani et al. [11] used artifical neural networks and
support vector machines to predict the average Nus-
selt number for TiO2/water nanofluid flows. Simil-

arly, Panda et al. [12] applied polynomial regression,
random forest, and artifical neural networks to model
average Nusselt values in heat exchanger with twis-
ted tape inserts. More recently, Sanhueza et al. [13]
utilized convolutional neural network to create de-
tailed 2D maps of the local Nusselt number in tur-
bulent flows over rough surfaces.

Despite recent advances, there remains a clear
shortage in the literature regarding local Nusselt
number correlations, especially for fluid flow around
solid bodies. Accordingly, we aim in this work to de-
velop a local Nusselt correlation using Gaussian pro-
cesses (GP), which is, to the best of our knowledge,
the first application of this machine learning method
in this context. Specifically, we extend the Reynolds
number range of the local correlations proposed by
Haeri and Shrimpton [7] up to Re = 400 with a fixed
Pr = 0.7. We aim to include our trained and valid-
ated GP within the DEM-CFD framework to obtain a
locally resolved heat transfer on the particle surface
in a non-particle-resolved framework.

The paper is organized as follows. Section 2
presents the DNS model. In Sec. 3, we derive the
local and average Nusselt number correlations. Sec-
tion 4 presents the DEM-CFD model with simulation
results based on the derived local correlations. Con-
clusions and an outlook are stated in Sec. 5.

2. DNS SIMULATION SETUP AND DATA
GENERATION

This section outlines the mathematical frame-
work and numerical approach employed in the DNS,
which are used to generate the database of the sur-
rogate model. The simulations investigate convect-
ive heat transfer around a stationary circular particle,
with air as the working fluid, over a range of Reyn-
olds numbers.

2.1. Governing Equations
The flow and heat transfer are modeled using

a thermal, compressible formulation under the low
Mach number approximation. This allows for dens-
ity variations driven by temperature changes, beyond
the Boussinesq approximation. The governing equa-
tions include conservation of mass, momentum, and
energy, and are given by

∂tρ + ∇ · (ρu) = 0, (1)
∂t(ρu) + ∇ · (ρu ⊗ u) = −∇ph + ∇ · τ + Fb, (2)

ρcp(∂tT + ∇ · uT ) = −∇ · (λ∇T ) + ∂t pt, (3)

ρ =
pt Mw

RT
, (4)

where, ρ, u, ph, τ, and Fb represent the gas density,
velocity field, hydrodynamic pressure, viscous stress
tensor, and body force per unit volume, respectively.
T , cp, λ, pt, Mw, and R denote the temperature, spe-
cific heat at constant pressure, thermal conductivity,
thermodynamic pressure, molecular weight, and the
universal gas constant, respectively.
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To capture the thermal expansion effects, the ve-
locity divergence is computed from a combination of
the continuity equation and the ideal gas law. As-
suming a constant pressure, this yields

∇ · u = −
1
ρ

Dρ
Dt
=

1
T

DT
Dt
. (5)

The dynamic viscosity is temperature-dependent and
modeled using Sutherland’s law

µ(T ) = µref

(
T

Tref

)3/2 Tref + S
T + S

, (6)

where µref = 1.68 × 10−5Pa · s , Tref = 273K, and
S = 110.5K are reference values specific to air. With
a fixed Prandtl number (Pr = 0.7), the thermal con-
ductivity is computed as λ = µcp/Pr. Local and av-
erage Nusselt numbers are defined as

Nui =
D λ ∂Ti

∂n

∣∣∣
surf

λ0(Tsurf − Tinlet)
, (7)

Nu =
1
A

∫
A

Nu dA, (8)

where λ and λ0 are the gas thermal conductivities, re-
spectively, calculated at surface temperature of cyl-
inder and mean temperature T0 = (Tsurf + Tinlet)/2.
The symbol A represents the lateral surface area of
the particle. In a discrete treatment, (8) can be ap-
proximated as Nu =

∑
Nui/nnodes, where nnodes de-

notes the total number of surface nodes and Nui the
local Nusselt number. The temperature gradients (7)
are approximated using a first-order-accurate finite-
difference (FD) scheme, tuned to ensure that the total
heat transfer matches the one computed between the
inlet and outlet boundaries.

The above equations are solved using a hy-
brid numerical approach. Specifically, the lattice
Boltzmann method (LBM) [14] is employed for solv-
ing the flow field, while the temperature field is
evolved using a FD scheme. The reader is referred
to Hosseini et al. [15] for more details related to the
hybrid LBM-FD formulation.

2.2. Simulation setup

The simulations are conducted in a two-
dimensional domain representing the flow of air
around a stationary circular cylinder. The inlet
boundary is subjected to a uniform velocity and tem-
perature of 300K, while the cylinder surface is held at
a constant temperature of 301K. Although the model
is capable of accounting for thermal expansion ef-
fects, the temperature difference is deliberately kept
small to suppress such influences and facilitate direct
comparison with prior studies in the literature. No-
slip boundary conditions are applied on the particle,
with periodic boundaries along the lateral edges and
a convective outflow condition at the outlet.

We consider Reynolds numbers in the range
Re ∈ [100, 400], defined based on the particle dia-
meter D, inlet velocity, and inlet kinematic viscos-

in
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Figure 1. Schematic view of simulation setup. The
red dashed lines denote the domain discretization
used for the DEM-CFD simulation. D denotes the
particle diameter.

ity. Grid independence and time-step sensitivity ana-
lyses are performed to ensure accuracy. The convect-
ive and diffusive terms in the finite-difference method
are discretized using a second-order central scheme,
while the time integration employs a first-order ex-
plicit Euler scheme.

After an initial transient period, the flow evolves
into a repetitive pattern characterised by vortex shed-
ding – commonly referred to as a Kármán vortex
street. To avoid a bias from transient dynamics,
the computation of the local Nusselt number is per-
formed after the initial transient stage. These res-
ults on the local Nusselt number serve as the primary
quantities of interest for thermal analysis and sub-
sequent machine learning applications.

A sketch of the computational domain, includ-
ing boundary conditions and geometric proportions,
is shown in Figure 1. Additional details regarding the
simulation parameters and flow properties are listed
in Table 1, where Ny and Nz denote the total number
of grid points along the lateral, y, and flow, z, direc-
tions, respectively (see Fig. 5 for the corresponding
directions).

Table 1. Simulation parameters used in the study

Parameters Values
Grid Size [mm2] 0.0625

Mw [kg/mol] 0.02896
Nz, Ny 500, 200

cp [J/kg · K] 1005
Time Step [s] 4.0 × 10−4

2.3. Model validation
In Fig. 2, we compare the local distribution of

the Nusselt number with numerical benchmark res-
ults. Specifically, we compare our results to Kim
& Choi [16] for Re = 120 and to Momose &
Kimoto [17] and Zhang et al. [18] for Re = 218.
The results show generally good agreement, with the
LB-FD solver capturing the overall trend of the local
Nusselt number distribution. However, minor dis-
crepancies are observed, which can be attributed to
the numerical model used. Specifically, LBM can-
not achieve an orthogonal grid resolution with re-
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Figure 2. Validation of the model. The results
are compared with Kim& Choi [16] for Re = 120
and Momose& Kimoto [17] and Zhang et al. [18]
for Re = 218. The angle θ = 0◦ corresponds to the
stagnation point of the flow.

spect to solid surfaces, requiring specialized treat-
ments for curvature. In this study, a linear second-
order bounce-back scheme is applied to approximate
the exact position of the solid surface. While this ap-
proach yields reasonable results, some discrepancies
may still arise due to the approximations in the rep-
resentation of the boundary.

2.4. Average correlation

We fit an average steady-state Nusselt correla-
tion using the available DNS database, in order to
benchmark our results against established correla-
tions from the literature. The resulting equation is
given by

Nu = 0.88Re0.4. (9)

Note that (9) does not depend on Pr number, as the
training data are obtained from simulations with con-
stant Pr = 0.7. We compare our results to Churchill
& Bernstein’s correlation for forced convection from
gases and liquids to a circular cylinder in crossflow
[19], which reads

Nu = 0.3 +
0.62 Re1/2

D Pr1/3[
1 + (0.4/Pr)2/3]1/4

×

1 + (
ReD

282 000

)5/84/5

. (10)

The results are plotted in Fig. 3 for the range Re =
[20, 400]. The two correlations show very good
agreement, even in the range Re = [20, 100[ that was
not included during training. Overall, the maximum
deviation is ∆Nu ≈ 0.48 and occurs at Re = 40. This
corresponds to a relative error of ≈ 14%.
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Figure 3. Comparison of steady-state average
Nusselt values as function of the Reynolds num-
ber, based on (9) and Churchill& Bernstein’s cor-
relation (10).

3. LOCAL AND AVERAGE NUSSELT
CORRELATIONS

3.1. Gaussian process regression
We consider a set of N training data points D =

{xi,Nui}
N
i=1, where each x = [Re, θ]T ∈ X ⊂ R2 de-

notes the input feature vector composed of the in-
let Reynolds number and the local radial angle at
the particle surface. The corresponding output Nui
is obtained with (7). We note that the local Nusselt
number values from each simulation are calculated
by averaging the local values over all time steps after
the transient phase. The start of this post-transient
regime is identified by the appearance of the von
Kármán vortex street in the wake of the cylinder.

We train a regression model f : X → R that
maps the input feature vector x to the local Nusselt
number on the particle surface for the configuration
presented in Sec. 2. Since multiple regression func-
tions may fit the data equally well, we adopt a Gaus-
sian process (GP) prior over f , which provides distri-
bution over functions and enables uncertainty quan-
tification in the predictions. By definition, a GP is
a collection of random variables, any finite number
of which have a joint Gaussian distribution [20]. We
assume that the prior of f is a GP and

f (x) ∼ GP(ξ(x),K(x, x′)), (11)

where ξ(x) is the mean function and K(x, x′) is the
covariance (or kernel) function describing the correl-
ation between any pair of inputs x and x′. The mean
function ξ(x) is chosen to be constant and equal to
the mean of the training set. For the covariance func-
tion, we adopt a radial basis function (RBF) kernel,
which is defined as

K(x, x′)) = σ2
cexp

− (Re − Re′)2

2l2Re

−
(θ − θ′)2

2l2θ

 ,
(12)
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where σ2
c is the signal variance and l(·) is the length

scale of the corresponding input. These variables are
treated as hyperparameters of the model.

Although our training data is generated from
DNS, it is common in GPs to take measurement er-
rors into consideration. Accordingly, we assume that
the training outputs are corrupted by additive Gaus-
sian noise ϵ ∼ N(0, σ2

n), i.e.,

Nui = f (xi) + ϵ, i = 1, · · · ,N, (13)

where σ2
n is the noise variance and is considered as

an additional hyperparameter.
Let T = {x∗m}

M
m=1 be a collection of M test

points, with each x∗m = [Re∗, θ∗m]T comprising a
new Reynolds number value, i.e., not used in the
training dataset D, and a local test angle θ∗m on the
particle surface. The goal is to predict the corres-
ponding local Nusselt number at these test points. In
GP regression, the joint distribution of the training
outputs y = [Nu1, · · · ,NuN]T and the test outputs
y∗ = [Nu∗1, · · · ,Nu∗M]T is a multivariate Gaussian.
According to the conditional Gaussian theorem [21],
the predictive distribution for y∗, conditioned on the
training data (X, y) and test inputs X∗ is given by

p(y∗|X, y, X∗) = N(ξ̃, K̃), (14)

where X, X∗ are the matrices of training and testing

input features, respectively. Here, ξ̃ and K̃ denote
the mean and covariance of the posterior predictive
distribution, and they are obtained using

ξ̃ = ξ(X∗) +

K(X∗, X)
(
K(X, X) + σ2

nI
)−1

(y − ξ(X)), (15)

K̃ = K(X∗, X∗) −

K(X∗, X)
(
K(X, X) + σ2

nI
)−1
K(X, X∗). (16)

The hyperparameters of the GP, i.e., ϕ =

[σ2
c , σ

2
n, lRe, lθ]T , have a strong influence on the pre-

diction accuracy; therefore, they must be optim-
ized. This is accomplished by maximizing the log-
likelihood of training outputs y given the inputs X
and hyperparameters ϕ, i.e.,

ϕ
opt
= argmax

ϕ
log(p(y|X, ϕ)), (17)

where

log(p(y|X, ϕ)) =

−
1
2

(
y − ξ(X)

)T (
K(X, X) + σ2

nI
)−1(

y − ξ(X)
)

−
1
2

log
∣∣∣∣∣K(X, X) + σ2

nI
∣∣∣∣∣ − N

2
log(2π). (18)

The gradients of the log-likelihood with respect to
every hyperparameter can be computed analytically.
Therefore, the optimization problem shown in (17)
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Figure 4. Top: GP evaluation for two test cases
with Re = 210 and 310 with 95% confidence inter-
vals. Bottom: Corresponding absolute prediction
error. The angle θ = 0◦ corresponds to the stagna-
tion point of the flow.

can be efficiently solved using gradient-based op-
timization methods, e.g., L-BFGS [22] or conjugate
gradient methods.

Once the hyperparameters have been optimized
using D, the GP model can be used for inference on
an unseen test inputs by evaluating the posterior dis-
tribution according to Eqs. (14) to (16).

3.2. Training setup
Our training dataset D consists of 5760 train-

ing samples obtained by computing the local Nusselt
number at every 1◦ increment along the particle sur-
face, with 0◦ corresponding to the stagnation point.
These values are extracted from 16 DNS simulations,
each parameterized by a distinct inlet Reynolds num-
ber uniformly distributed in the range [100, 400]. In
addition, we scale the input features of D between 0
and 1 to improve the numerical conditioning of the
kernel matrix.

The hyperparameters ϕ are optimized using the
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L-BFGS algorithm provided by Scikit-learn [23]. We
restart the optimization using 10 different initializ-
ations in the hyperparameter space to avoid poor
local minima. The resulting optimal hyperparameter
vector, identified using the scaled inputs, is ϕ =
[32.376, 1.71 × 10−4, 0.542, 0.01]T .

3.3. Gaussian Process model evaluation
We evaluate the accuracy of the model by com-

paring the local Nusselt values, predicted by the GP,
to the ground truth values obtained from the DNS
simulations for the test cases with Re = 210, 310.
The corresponding root mean square errors (RMSE)
are 0.14 and 0.09, respectively. Figure 4 shows
the angular distribution of Nusselt number along the
particle surface for the two considered test cases,
along with the corresponding absolute prediction er-
ror. The results show that the GP is capable of accur-
ately predicting the local Nusselt number values over
the entire angular range, with near-perfect agreement
except in the wake region behind the cylinder, where
it slightly underestimates the Nusselt values. The
reason for this discrepancy lies in the complex flow
behavior in the wake region, where flow separation
effects dominate. Specifically, the GP predicts tem-
porally averaged local Nusselt values learned from
the training data, which may not fully capture the in-
fluence of Reynolds number on the target values in
this region. Moreover, the shaded gray region, which
represents the 95% confidence interval, is extremely
narrow, indicating high certainty in the predictions.

4. LOCALLY RESOLVED DEM-CFD SIM-
ULATIONS

4.1. GP implementation in DEM-CFD
framework

Gaussian Process DEM-CFD simulations for the
setup described in Sec. 2.2 were carried out using the
in-house DEM-CFD-code. We refer to [24, 25] for
more details on the code. Here we focus on the in-
tegration of the GP into the DEM-CFD framework
and highlight the benefits of using local Nusselt num-
ber model. First, to mimic the numerical conditions
of unresolved 3D-DEM-CFD simulations, the fluid
domain was deliberately meshed with a coarse grid
consisting of (1x2x4) cells. This configuration en-
sures that the particle size remains much smaller than
the CFD size LCFD, cell, i.e., LCFD, cell ≫ D. Further-
more, only one cell constitutes the domain depth (x-
direction) to enforce a quasi-2D flow configuration,
which is comparable to the DNS setup. The grid of
the fluid domain used is depicted in Fig. 1 with red
dashed lines.

In the DEM approach, the particles are represen-
ted as polyhedra [26] with a discretized (triangulated)
surface. This polyhedron representation has two ad-
vantages: First, any particle shape can be included
and the local approach can later be easily translated
to other particle shapes. Second, boundary condi-

Figure 5. Radial discretization of the circular
particle.

tions from the triangulated surface mesh can easily
be translated to adjacent cells of an intra-particle tet-
rahedral mesh. The radial surface discretization of
the circular particle is depicted in Fig. 5. We note
that the particle depth is discretized using only one
cell, analogous to the fluid domain.

Our implementation of the GP within the DEM-
CFD framework provides the Nu number distribution
along the particle surface at every 1◦, based on the
inlet Reynolds number, which is readily available in
the simulation. However, to project this distribution
onto the particle faces in the DEM-CFD domain and
assign the local Nusselt number Nuθ, it is necessary
to first identify the stagnation point on the particle
surface (θ = 0◦). This is achieved by comparing the
orientation of each particle face to the flow vector u
obtained from the CFD solution. Once the stagnation
point is known, the remaining θi are calculated dur-
ing runtime from the face centroids ci and the corres-
ponding values of Nuθ are assigned on the respective
faces.

4.2. Results
The advantages of using the GP-Nu in DEM-

CFD are obvious: While the simulation is unresolved
(LCFD, cell ≫ D) and, therefore, local information
of the fluid-solid heat transfer is not available, the
GP provides Nuθ on the particle surface with a DNS
level of accuracy. This is particularly interesting if
the external heat transfer is coupled to a resolved in-
ternal heat transport. An example of this is depicted
in Fig. 6, which shows the temperature profiles of
the disc for the locally resolved and mean case. It
is evident from the temperature profiles that, due to
the spatial resolution of Nusselt on the surface, the
transient heat conduction inside the particle is more
realistic than for a mean Nusselt value. As the Nus-
selt number at the stagnation point is the largest and
drops to less than half its value on the back of the
disc (θ > 90◦), the thermal front moving towards the
disc core takes on a half-moon shape. Consequently,
heat transfer in the particle is not uniformly directed
towards the center of the particle as in the mean Nus-
selt case.

In Fig. 7, we compare the evolution of the mean
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Figure 6. Temperature profiles at t = 100s, Tin =

400K and Re = 100.
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Figure 7. Temperature evolution for locally re-
solved GP DEM-CFD simulations and reference
DEM-CFD for Re = 100, 200, 300.

particle temperature for the GP DEM-CFD model
and the model that employs a mean Nusselt num-
ber for three different Reynolds numbers (Re =
100, 200, 300). As expected, the heating time of the
particle is approximately the same for the two cases
and the three respective Reynolds numbers, since the
integral of Nuθ (i.e. heat flux) in the GP case equals
the mean Nusselt number value. Although mean tem-
peratures are quite similar, temperature is not distrib-
uted radially uniform in the GP case, as shown be-
fore, and local surface temperature differences may
lie in the range of 20 − 25K for the depicted cases.

Regarding the computational effort, the GP takes
marginally more time to calculate the local Nuθ,
compared to using mean Nusselt values. This over-
head is mainly attributed to computing a single
Cholesky decomposition used for the matrix inver-
sion given in Eqs. (15) and (16), which takes ≈ 3−4s
to compute.

5. CONCLUSION
In this work, a local Gaussian process model

for the Nusselt number (Nu-GP) has been presented.
The GP was trained using a DNS database performed
with the LBM to crossflow around an isolated circu-
lar cylinder, parameterized by Pr = 0.7 and 100 ≤
Re ≤ 400. We first validated an LBM model against
benchmark results from the literature, demonstrat-

ing good agreement with some deviations near the
stagnation point. Subsequently, we trained a Gaus-
sian Process to represent the LBM results at a low
computational cost. The Gaussian Process achieves
excellent accuracy on test cases when compared to
the original LBM data, with a maximum RMSE of
0.14. Finally, we demonstrated that our GP-Nu can
easily be integrated into a coupled DEM-CFD frame-
work. We illustrated this integration with first GP-Nu
DEM-CFD simulation results. Those show that GP-
Nu models indeed provide locally resolved Nusselt
numbers, while requiring only very little additional
computational effort compared to mean Nusselt cor-
relations.

The cylindrical particle case studied in this work
constitutes a readily verifiable and thus essential step
toward establishing a solid foundation for more com-
plex particle geometries. This simplified scenario en-
ables us to validate the approach before extending
it to irregular shapes, which will require incorporat-
ing additional descriptors into the Gaussian Process
model alongside Re and θ. In future work we aim
to develop robust correlations that capture a broader
spectrum of particle shapes and simulation setups, in-
cluding cases involving denser particle packings.
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