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ABSTRACT  

The present work details the development, 

implementation and performance of a machine-

learning (ML) based predictive model for simulating 

particle-laden wall-bounded turbulent flows. 

Additionally, the technique is demonstrated with a 

particular focus on investigating the influence of 

Reynolds number on particle trajectory responses, 

comparing with equivalent high-fidelity simulations. 

Using a hybrid ML algorithm, the model is trained 

using data from direct numerical simulation (DNS) 

and Lagrangian particle tracking (LPT) in turbulent 

channel flows. Training trajectories are obtained 

from 𝑅𝑒𝜏 = 180 and 𝑅𝑒𝜏 = 300 DNS-LPT 

predictions across multiple particle Stokes numbers, 

however, the value of the technique is demonstrated 

at intermediate Reynolds numbers (𝑅𝑒𝜏 = 240), 

which offers strong agreement with DNS-LPT 

obtained first- and second-order velocity statistics, 

emphasising the accuracy at predicting particle 

dynamics at Reynolds numbers the ML model was 

never trained on. The techniques’ effectiveness 

demonstrates the ability to minimise the need for 

extensive DNS-LPT particle trajectory data which 

maintaining high accuracy in predicting dynamic 

properties and emergent phenomena across different 

Reynolds numbers. Beyond its immediate scope, this 

approach has broad applications in industrial and 

environmental processes where predictive models 

for turbulent multiphase flows are critical, such as 

aerosol transport and nuclear waste processing. 
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NOMENCLATURE  

 

𝐶𝐷 [-] drag coefficient 

𝐼 [-] training input vector 

𝑁 [-] spectral element method 

(SEM) order 

𝑁𝑃 [#] number of simulated particles 

𝑅𝑒𝐵 [-] bulk Reynolds number 

𝑅𝑒𝜏 [-] shear Reynolds number 

𝑈𝐵 [ms-1] bulk velocity 

𝑑𝑃
∗  [-] particle diameter 

𝒇∗ [-] forcing function 

𝑝∗ [-] pressure field 

𝑡∗ [-] time 

𝑢𝜏 [ms-1] fluid shear velocity 

𝒖𝐹
∗  [-] fluid velocity vector 

𝑢′𝐹
∗  [-] fluid velocity fluctuation 

𝒖𝑃
∗  [-] particle velocity vector 

𝒖𝑆
∗ [-]  slip velocity vector 

𝒙∗ [-] position vector 

𝛿 [m] channel half-height 

𝜈𝐹 [m2s-1] fluid kinematic viscosity 

𝜌𝐹 [kgm-3] fluid density 

𝜌𝑃
∗  [-] particle-fluid density ratio 

Δ𝑡∗ [-] DNS timestep 

 

Subscripts and Superscripts 

 

P, F     particle, fluid 

B, 𝜏            bulk, shear 

∗                 bulk non-dimensional units 

RMS  root mean square 

1. INTRODUCTION  

Machine learning (ML) has emerged in recent 

years as a vital tool in enhancing analysis, research, 

predictive capabilities and decision-making across 

countless applications [1]. In essence, the term ML 

itself encompasses a wide variety of algorithms and 
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modelling tools used originally for data analysis, but 

which have been adopted across many scientific 

disciplines over the last few decades [2]. In such 

scenarios, ML applications have grown significantly. 

For instance, in healthcare, ML is capable of 

diagnosing and predicting diseases through analysis 

of medical data and imaging [3]. Its scope extends 

beyond that of scientific purposes into industries 

such as finance and automation of vehicles where it 

supports fraud detection [4] and navigation and 

decision-making in self-driving cars [5]. In such 

applications, the ability for ML to ‘learn’ is grounded 

in being able to obtain training data, from which 

insights and information can be extracted to develop 

intelligent models. 

Applications of ML further extend into the field 

of fluid dynamics, facilitated by the existence (and 

generation) of extensive data from both 

computational simulations and experiments. ML has 

been used to address challenges such as turbulence 

closure models, reduced-order modelling [6] and 

flow optimisation and control [7, 8]. Jain et al. [9] 

applied random forest regression in order to predict 

fluid flow in curved pipes using simulation-

generated training data. Aside from mispredictions 

of vortex positions, the technique was shown to 

accurately capture important characteristics of 

turbulent flow in non-trivial geometries. Li et al. [10] 

used k-nearest neighbour (KNN) techniques to learn 

the features of mixing tank systems obtained from 

limited experimental Lagrangian trajectories, 

demonstrating the effectiveness of ML algorithms 

applied in the context of experimentally obtained 

datasets. Yang et al. [11] expanded upon this by 

introducing the concept of a ‘hybrid’ ML model 

which combined preprocessors, noise generators and 

particle-wall collision algorithms to simulate 

turbulent single-phase and particle-liquid flows in 

pipes. This approach was shown to accurately predict 

local fluid and particle velocities, as well as spatial 

concentration distributions, having been trained on 

solely dynamic experimental data. 

As the complexity of the fluid dynamic system 

increases, due to the presence of complex geometries 

or additional phases, investigation into such 

scenarios poses greater challenges due to the 

intricacies of the additional interactions involved. In 

such systems, the fluid velocity field may fluctuate 

both due to the existence of turbulent eddies, as well 

as two-way coupling between particulate phases and 

the continuous flow field [12] which influences 

turbulence modulation, and four-way coupling 

wherein particles may interact with other particles 

via collision or agglomeration [13]. Being able to 

capture these phenomena in lower fidelity simulation 

techniques stands as an ongoing challenge in 

computational fluid dynamics, which for most 

purposes one must turn to high fidelity methods such 

as direct numerical simulation (DNS) and immersed 

boundary methods to holistically represent the 

system and extract knowledge from fully resolved 

simulations. These are often very computationally 

intensive and require high timeframes to perform the 

computations. The elucidation of such processes 

using high fidelity techniques is hence crucial for 

increasing the accuracy at which these processes are 

represented in lower order models, which in turn is 

vital for industrial applications such as the 

development of digital twins [14]. 

The present study aims to develop and 

demonstrate an enhanced predictive model which 

uses a hybrid ML approach to determine key fluid 

and particle behaviour in turbulent flows. An 

artificial neural network (ANN) is trained on 

dynamic particle databases generated from DNS and 

Lagrangian particle tracking (LPT) in channel flows. 

The model seeks to replicate similar trajectories and 

hence bulk flow observations such as velocity 

profiles of both phases and concentration profiles of 

the particulate phase, while reducing the amount of 

computational resources and time necessary to 

obtain similar degrees of accuracy. The study further 

aims to demonstrate the generalisability of the 

technique, applying the trained algorithm to 

parameter sets outside those trained upon, in this case 

considering a Reynolds number previously unseen 

by the ML algorithm. Finally, the technique builds 

upon previous attempts [11] by incorporation lagged 

particle velocities into the training input, manifesting 

the concept of particle momentum within the model, 

further generalising the technique to high Stokes 

number regimes, wherein particle motion is more 

decorrelated from the local fluid streamlines. 

2. METHODOLOGY  

2.1. Direct Numerical Simulation 

To obtain high accuracy predictions of the 

continuous flow field capable of capturing all 

relevant turbulence length and timescales, the DNS 

code Nek5000 [15] was employed in the context of a 

turbulent channel flow at various shear Reynolds 

numbers, 𝑅𝑒𝜏 = 𝑢𝜏𝛿/𝜈𝐹 = 180, 240 and 300. Here, 

𝑢𝜏 is the shear velocity, 𝛿 is the channel half-height 

and 𝜈𝐹 is the kinematic viscosity of the fluid phase. 

Nek5000 uses a spectral element method-based 

Eulerian solver at high order (𝑁 = 7) to model the 

temporal and spatial evolution of the flow field, and 

is applied on a hexahedral spectral element grid 

representing a standard channel flow geometry. 

The governing equations for the continuous 

phase are the Navier-Stokes (NS) equations, 

expressed in non-dimensional form using bulk flow 

properties to achieve the following: 

 
∇ ⋅ 𝒖𝐹

∗ = 0,  (1) 

  
𝐷𝒖𝐹

∗

𝐷𝑡∗
= −∇𝑝∗ +

1

𝑅𝑒𝐵
∇2𝒖𝐹

∗ + 𝒇𝑃𝐺
∗ + 𝒇2𝑊

∗ . 
(2) 
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Here, 𝒖𝐹
∗ (𝒙∗, 𝑡∗) represents the fluid velocity vector at 

position 𝒙∗ and time 𝑡∗, while 𝑝∗(𝒙∗, 𝑡∗) is the fluid 

pressure, 𝑅𝑒𝐵 = 𝑢𝐵𝛿/𝜈𝐹 is the bulk Reynolds 

number, 𝒇𝑃𝐺
∗  is a constant pressure gradient forcing 

term and 𝒇2𝑊
∗  is an arbitrary cell-dependent forcing 

term which accounts for two-way momentum 

exchange between particles and fluid (two-way 

coupling). In the above and subsequent equations, 

parameters which are marked with an asterisk (∗) 
imply non-dimensional variables achieved using 

bulk properties, (𝛿, 𝑈𝐵, 𝜌𝐹), with 𝜌𝐹 the fluid 

density. 

The NS equations are solved numerically on a 

structured Cartesian grid composed of 27 × 18 × 23 

spectral elements of 7th order, amounting to 

approximately 3.9 million equivalent ‘nodes’. The 

grid is refined in the wall-normal direction to capture 

near-wall flow structures more accurately, while a 

uniform distribution of elements is maintained in the 

streamwise and spanwise directions. The 

computational domain, defined as 12𝛿×2𝛿×6𝛿, 

represents a channel geometry. These dimensions are 

selected to capture all significant vortical structures, 

and the geometry is illustrated in Fig. 1. 

 

 

Figure 1: Schematic of the particle-laden 

turbulent channel flow at 𝑹𝒆𝝉 =180 used in DNS-

LPT simulations 

The solver uses a constant time step of Δ𝑡∗ =
0.005. Periodic conditions are imposed in the 

streamwise and spanwise directions to ensure that the 

flow remains cyclic. The extents of the wall-normal 

direction are located at 𝑦∗ = ±1 and are subject to no-

slip and impermeability conditions. The flow is 

driven by a constant pressure gradient applied in the 

streamwise (𝑥∗) direction, with the pressure gradient 

magnitude specified as follows: 

  

𝑑𝑝∗

𝑑𝑥∗
= (

𝑅𝑒𝜏
𝑅𝑒𝐵

)
2

. (3) 

2.2. Lagrangian Particle Tracking 

To track the trajectories of solid particles within 

the flow, a Lagrangian particle tracking routine was 

developed and integrated to run concurrently with 

the fluid phase solver within Nek5000. Each particle 

is modelled as a point-like, rigid, impenetrable 

computational sphere. After each time step of the 

continuous phase completes, the LPT routine solves 

the non-dimensional equations of motion for each 

particle considering a force-balance which acts on 

the particle’s inertia, as described by Maxey [16] and 

Patterson and Riley [17]. A key objective in 

developing the hybrid ML algorithm is to generalise 

the model across a range of Stokes numbers. As a 

result, forces such as lift, virtual mass, and pressure 

gradient, in addition to drag, are considered in the 

calculations since they may be significant under 

certain conditions, as noted in previous studies [18]. 

However, the Basset history force is excluded due to 

its high computational cost and earlier findings 

suggesting its negligible effect on particle motion 

[19]. The Newtonian equations governing each 

particle's motion are as follows: 
 

𝑑𝒙𝑃
∗

𝑑𝑡∗
= 𝒖𝑃

∗ , (4) 

MVM
∂𝒖𝑃

∗

∂𝑡∗
=
3𝐶𝐷|𝒖𝑠

∗|

4𝑑𝑝
∗𝜌𝑃

∗ 𝒖𝑠
∗

⏟      
𝐷𝑟𝑎𝑔

 +  
3

4

𝐶𝐿
𝜌𝑃
∗ (𝒖𝑠

∗ ×𝝎𝐹
∗ )

⏟          
𝐿𝑖𝑓𝑡

+
1

2𝜌𝑃
∗

𝐷𝒖𝐹
∗

𝐷𝑡∗⏟    
𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑀𝑎𝑠𝑠

+
1

𝜌𝑃
∗

𝐷𝒖𝐹
∗

𝐷𝑡∗⏟    
.

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

 

(5) 

 

In Eqs. (4) and (5), 𝒙𝑃
∗   is the particle position 

vector, 𝒖𝑃
∗  the particle velocity vector, 𝒖𝐹

∗  the fluid 

velocity vector spectrally interpolated at the position 

of the particle, 𝒖𝑆
∗ = 𝒖𝐹

∗ − 𝒖𝑃
∗  the slip velocity 

between the fluid and the particle, 𝑑𝑃
∗  the particle 

diameter non-dimensionalised by the channel half-

height, 𝜌𝑃
∗  the density ratio between the fluid and the 

particle and 𝝎𝐹
∗  the vorticity of the fluid interpolated 

spectrally at the particle position, given by 𝝎𝐹
∗ =

𝛁 × 𝒖𝐹
∗ . 𝑀𝑉𝑀 is the virtual mass modification term 

given by 𝑀𝑉𝑀 = (1 +
1

2𝜌𝑃
∗). The drag coefficient, 

𝐶𝐷, is calculated dynamically using the correlations 

of Schiller and Naumann [13], where 𝐶𝐷 = 24𝑓𝐷/
𝑅𝑒𝑃, with 𝑓𝐷 = (1 + 0.15𝑅𝑒𝑃

0.687) when 𝑅𝑒𝑃 > 0.5 

and 𝑓𝐷 = 24/𝑅𝑒𝑃 otherwise (in the Stokes regime). 

Here, 𝑅𝑒𝑃 is the particle Reynolds number, given by 

𝑅𝑒𝑃 = 𝑅𝑒𝐵𝑑𝑃
∗ |𝒖𝑆

∗|. Further details on the calculation 

and origins of these terms are available in Mortimer 

et al. [18]. 

Particle translation during a time step is 

calculated after each fluid time step has completed. 

First, spectral interpolation is used to obtain the fluid 

velocity and its spatial derivatives at the particle 

positions. Then, Eqs. (4) and (5) are solved using a 

fourth-order Runge-Kutta scheme, with the time step 

equivalent to that of the fluid solver. 

Collisions between particles and the channel 

walls are handled as elastic impacts, reversing the 

wall-normal component of the particle's velocity 

upon contact. In the periodic directions (streamwise 

and spanwise), particles exiting the domain on one 
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side are reintroduced at the corresponding position 

on the opposite side, maintaining the periodic nature 

of the channel flow. The training dataset consisted of 

18 simulations, across two Reynolds numbers and 

multiple particle Stokes numbers based on shear 

scales, 𝑆𝑡+, obtained by varying both the particle 

diameter and the particle-fluid density ratio. The 

fluid and particle properties used to train and validate 

are summarised in Table 1. 

Table 1. Fluid and particle properties for each 

simulation considered. Simulation set names 

ending in T represent those used to train the ML 

algorithm, whereas V is used to indicate 

simulations performed for comparison purposes 

only 

Parameter SIM1T SIM2V SIM3T 

𝑅𝑒𝜏 180 240 300 

𝜌𝑃
∗  2.5, 1111, 2041 

𝑑𝑃
∗  0.0025, 0.005, 0.0075 

𝑆𝑡+ 0.028 → 574.03 

𝑁𝑃 10,000 

2.3. Hybrid ANN Algorithm 

Lagrangian trajectories obtained from the 

simulation methods described in Sections 2.1 and 2.2 

are first pre-processed into a data array containing 

their vertical positions within the channel and 

corresponding velocity components, 

𝑦∗, 𝑢𝑥,𝑡
∗ , 𝑢𝑦,𝑡

∗ , 𝑢𝑧,𝑡
∗ . These are then combined with the 

simulation conditions and the velocities from the 

previous time step to form the complete input feature 

set as follows: 

  

𝐼 = (
𝑅𝑒𝜏, 𝜌𝑃

∗ , 𝑑𝑃
∗ ,𝑦∗,

𝑢𝑥,𝑡−1
∗ , 𝑢𝑦,𝑡−1

∗ , 𝑢𝑦,𝑡−1
∗  

). (5) 

 

An artificial neural network was developed for 

this study due to its capacity to capture complex, 

non-linear relationships within the data and its 

proven accuracy in similar predictive modelling 

tasks. Previous studies have also demonstrated that 

ANNs can outperform other methods. The ANN 

model is configured with four hidden layers 

containing 256, 128, 64 and 32 configurable neurons 

and uses the rectified linear unit (ReLU) activation 

function. The number of layers and neurons, as well 

as the learning rate and batch size, were optimised 

beforehand through hyperparameter tuning. 

Before training, the input features are 

normalized between 0 and 1 based on the minimum 

and maximum values of each variable. The training 

dataset consists of data from 𝑁𝑃 = 10,000 particles 

with trajectories across 1000 instantaneous time 

states, sampled at intervals of 𝑡∗ = 0.005. The 

impact of varying the number of trajectories used for 

training on the model's performance was evaluated 

and chosen to ensure optimal training root mean 

square error. The ANN was trained over 100 epochs 

and optimised using the adam optimiser, minimising 

the root-mean-square-error (RMSE) loss function, 

with a batch size of 32 and a train-test validation split 

of 0.3. 

Once the model was adequately trained, 

synthetic particle trajectories are generated by first 

initialising each particle's position within the 

boundaries of the channel flow domain. The particles 

are then assigned velocities corresponding to the 

non-dimensional bulk velocity 𝑈𝐵
∗ = 1.0. During the 

hybrid ML-informed simulation, the ANN predicts 

the next particle velocity using the input feature set 

at the present time, as in Eq. (5). To account for local 

velocity fluctuations, a Gaussian noise model is also 

incorporated, defined as:  

 
𝑢𝐹
′ ∗~𝑁(𝜇, 𝜎2), 

 

(6) 

where the mean, 𝜇, and the standard deviation, 𝜎, 
were chosen to validate against fluid flow predictions 

from DNS-LPT simulations and differ for each 

Reynolds number and parameter set. Furthermore, 

the wall-normal proximity, |1 − 𝑦∗|, is taken into 

account as an additional factor such that 𝜇 and 𝜎 are 

both functions of 𝑦∗. The predicted subsequent 

velocity may then be calculated using: 

 
𝑢𝑝,𝑡
∗ = 𝑢̅𝑃

∗ + 𝑢𝐹
′ ∗, 

 

(7) 

where is 𝑢̅𝑃
∗  predicted by the trained ANN using the 

particle/fluid properties, previous velocities, and 

wall-normal positions within the channel. The 

particle positions are subsequently updated using a 

standard Euler time-stepping scheme using a time 

step identical to that employed in the DNS-LPT. 

To handle particle-wall collisions, a collision 

detection and response mechanism is implemented, 

identical to that used in the LPT method. 

Specifically, in the vertical direction, the particle's 

velocity is reversed upon collision with the channel 

wall. In the streamwise and spanwise directions, 

particles exiting one boundary are reintroduced at the 

corresponding position on the opposite side, 

preserving the periodic flow characteristics of the 

channel. 

3. RESULTS AND DISCUSSION  

Initially, three simulations of unladen turbulent 

channel flows at SEM order 𝑁 = 7 were conducted, 

using a constant pressure gradient driving force to 

establish a statistically stationary turbulence field for 

𝑅𝑒𝜏 = 180, 240 and 300. The simulations were 

initialised with a condition featuring a mean velocity 

profile containing minor perturbations to promote 

the transition to turbulence. The simulations ran for 

𝑇𝑆
∗ = 100 non-dimensional time units, with statistics 

collected during the final 50 ≤ 𝑡∗ ≤ 100. 

Additionally, statistics were measured at 𝑡∗ = 10 
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intervals to ensure no temporal variations in the 

results. The 𝑅𝑒𝜏 = 180 and 300 single-phase 

channel flows have been validated in previous 

publications [18, 20]. 

To facilitate the Gaussian noise generation 

function, velocity fluctuation statistics were 

collected from the validated channel flows over new 

simulations with a temporal duration of 𝑡∗ = 100. 

Figure 2 presents the probability density functions 

(p.d.f.s) for all three components of the velocity 

fluctuations, demonstrated in the 𝑅𝑒𝜏 = 180 

simulation, and sampled from uniformly distributed 

locations throughout the channel domain over the 

entire simulation period. To validate the Gaussian 

noise model used for predicting local fluctuations on 

the particles, the sampled velocity fluctuations were 

compared against the model’s predictions. In all 

three component directions, the noise model is 

shown to accurately capture the range and 

distribution of the fluctuating fluid velocities. 

Similar observations were made for the 𝑅𝑒𝜏 = 240 

and 300 flows. 

 

   

Figure 2: Gaussian noise model validation of 

velocity fluctuation components for single-phase 

DNS at 𝑹𝒆𝝉 = 180 

 

In order to improve the accuracy of the Gaussian 

noise model when representing the true nature of 

velocity fluctuation distributions, the hybrid ML 

technique was enhanced to consider a wall proximity 

based standard deviation for the Gaussian profiles. 

Figure 3 demonstrates the functional relationship 

between wall distance and each component of the 

profile’s standard deviation, 𝜎. This was digitised as 

a look-up table, with points interpolated linearly 

between each measured region when calculating Eqs. 

(6) and (7). Because a major focus of the present 

work is to reduce runtimes while preserving DNS-

like accuracy for particle trajectories, the resolution 

was chosen to resolve the important peaks. However, 

it should be noted that interpolation of the 

streamwise component may play a role in reducing 

accuracy in the hybrid ML model, since the actual 

peak is fairly sharp, and hence standard deviations 

are not as likely to be predicted with the same 

accuracy as in the bulk flow region. 

 

 

Figure 3: Gaussian noise standard deviation 

calculation based on velocity fluctuation 

components for single-phase DNS at 𝑹𝒆𝝉 = 180 

 

The ANN was trained on 10,000 particle 

trajectories for each simulation dataset over 100 

epochs. Training beyond this point led to overfitting, 

as indicated by an increase in RMSE for the 

validation dataset compared to the training dataset. 

After approximately 100 epochs, the validation MSE 

stabilised at around 4-5%. After training, the model 

was utilised to simulate particle-laden flows and the 

results were compared with those from DNS-LPT for 

corresponding simulations. 

Figure 4 compares the predicted mean 

streamwise velocities of the hybrid ML particles with 

the DNS-LPT results for 𝑅𝑒𝜏 = 180 and 𝜌𝑃
∗ =

2.5, 𝑑𝑃
∗ = 0.0025. The predictions show excellent 

agreement across the wall-normal direction of the 

channel, with some slight overprediction in the bulk 

flow region. Similar comparisons for the RMS 

velocity fluctuations and the shear stress are shown 

in Fig. 5, revealing close alignment of the two 

predictions close to the wall but noticeable 

discrepancies in the channel's core. These deviations 

are more significant for the wall-normal and 

spanwise components. It is evident that the hybrid 

ML algorithm tends to overestimate the velocity 

fluctuations for these two components, likely due to 

the inability to fully capture emergent behaviour 

such as particle entrainment in low-speed streaks in 

the buffer layer, at which the accuracy is weakest. 

The algorithm also captures the general trends in the 

shear stress profile, though its accuracy is lower both 

within the buffer layer region as well as within the 

bulk flow region. 
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Figure 4: Comparison of mean particle 

streamwise velocity predictions between the 

present DNS results and the hybrid ML-predicted 

trajectories for 𝑹𝒆𝝉 = 𝟏𝟖𝟎 and 𝝆𝑷
∗ = 𝟐. 𝟓, 𝒅𝑷

∗ =
𝟎. 𝟎𝟎𝟐𝟓 

 

 

Figure 5: Comparison of and root-mean-square 

velocity fluctuations and shear stress predictions 

between the present DNS results and the hybrid 

ML-predicted trajectories for 𝑹𝒆𝝉 = 𝟏𝟖𝟎 and 

𝝆𝑷
∗ = 𝟐. 𝟓, 𝒅𝑷

∗ = 𝟎. 𝟎𝟎𝟐𝟓 

 

To determine the extent to which the hybrid ML 

algorithm can handle parameter sets outside those 

originally trained upon, an additional DNS-LPT 

simulation was performed at 𝑅𝑒𝜏 = 240, which lies 

halfway between those considered for the training 

datasets. 

Figures 6 and 7 present the comparison of mean 

streamwise velocities and RMS velocity fluctuations 

for the untrained parameter set at 𝑅𝑒𝜏 = 240, in 

order to assess the generalisation capability of the 

hybrid ML model to conditions outside the training 

range. 

In Figure 6, the predicted mean streamwise 

velocities show strong agreement with the DNS-LPT 

results across the wall-normal direction of the 

channel. Minor discrepancies are observed in the 

bulk region, where the ML model slightly 

overestimates the velocities. This overprediction 

could be attributed to the model's interpolation 

between the trained datasets at 𝑅𝑒𝜏 = 180 and 300, 

leading to a slight bias, though slight overprediction 

was observed in both training datasets. Nevertheless, 

the model accurately captures the overall trend, 

demonstrating its ability to generalise the mean 

particle behaviour to intermediate Reynolds numbers 

effectively. 

 

 

Figure 6: Comparison of mean particle 

streamwise velocity predictions between the 

present DNS results and the hybrid ML-predicted 

trajectories for 𝑹𝒆𝝉 = 𝟐𝟒𝟎 and 𝝆𝑷
∗ = 𝟐. 𝟓, 𝒅𝑷

∗ =
𝟎. 𝟎𝟎𝟐𝟓 

 

Figure 7 compares the RMS velocity 

fluctuations, exhibiting strong agreement near the 

channel walls but noticeable deviations in the core 

region. These discrepancies are more pronounced for 

the wall-normal and spanwise components, 

consistent with observations for the other Reynolds 

numbers. The hybrid ML model tends to this time 

underpredict the fluctuations, particularly in regions 

where turbulence modulation is more significant. 

This is likely due to the model's inability to further 

fully capture complex emergent behaviours, such as 

particle clustering and low-speed streak entrainment, 

which are more prominent at higher Reynolds 

numbers. 

Overall, the hybrid ML model exhibits strong 

predictive performance for an unseen Reynolds 

number, validating its generalisability across 

different flow conditions. However, the 

overestimation of velocity fluctuations indicates 

potential areas for improvement, such as 

incorporating additional physical models or 

enhancing Gaussian noise modelling techniques to 
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better inform the model of the presence of turbulent 

structures and particle-fluid interactions. 

 

 

Figure 7: Comparison of and root-mean-square 

velocity fluctuations and shear stress predictions 

between the present DNS results and the hybrid 

ML-predicted trajectories for 𝑹𝒆𝝉 = 𝟐𝟒𝟎 and 

𝝆𝑷
∗ = 𝟐. 𝟓, 𝒅𝑷

∗ = 𝟎. 𝟎𝟎𝟐𝟓 

4. CONCLUSIONS 

This study aimed to develop and validate an 

enhanced predictive model for simulating particle 

dispersion, advection, and wall interactions in 

turbulent channel flows using a hybrid machine 

learning algorithm. By utilising dynamic databases 

generated from DNS and LPT, another aim was to 

reduce the amount of simulation data required to 

achieve statistically stationary and accurate profiles 

while maintaining high prediction accuracy. 

Additionally, the model was tested on an unobserved 

parameter set at 𝑅𝑒𝜏=240 to evaluate its 

generalisability beyond the training parameter sets. 

The results demonstrate that the hybrid ML 

algorithm, which incorporates an ANN model, 

effectively predicts particle trajectories with a 

significant reduction in computational cost. The 

model requires only around 10,000 DNS-LPT 

trajectories for training (c.f. 300,000 used in 

comparative studies [20]) and is able to generate 

additional ML-informed trajectories efficiently, 

resulting in substantial time and resource savings. 

This efficiency was particularly evident when 

generating synthetic trajectories for untrained 

Reynolds numbers, where the model captured the 

mean streamwise velocities with high accuracy. 

Although some discrepancies were noted in the RMS 

velocity fluctuations, particularly in the wall-normal 

and spanwise components, the overall agreement 

with DNS-LPT results was strong, validating the 

model’s predictive capability. 

The study demonstrates the potential of the 

hybrid ML algorithm for efficiently simulating 

particle dynamics in wall-bounded turbulent flows, 

making it a critical tool for real-time applications, 

such as digital twin technology. The model's ability 

to generalise to an unobserved Reynolds number 

showcases its robustness and adaptability across 

different flow conditions. However, the 

overestimation of velocity fluctuations in the channel 

core suggests areas for further refinement, such as 

enhancing the noise model or incorporating 

additional models (such as physics-informed 

components to the neural network) to better allow the 

training to understand interaction with complex flow 

structures. 

Despite these areas for improvement, the 

reduced computational time and increased efficiency 

offered by this approach make it a promising 

alternative to traditional DNS-LPT simulations. 

Future work will focus on optimising the model 

architecture, exploring advanced noise modelling 

techniques, and extending its applicability to more 

complex flow scenarios and particle behaviours. 

These advancements will further enhance the 

model's accuracy and versatility, broadening its 

utility in both academic research and industrial 

applications, particularly where real-time analysis 

and decision-making are critical. 
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