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ABSTRACT

A computationally efficient and novel turbulent

mixing model termed Hierarchical Parcel-Swapping

(HiPS) was introduced by A.R. Kerstein [J. Stat.

Phys. 153, 142-161 (2013)]. HiPS simulates the ef-

fects of turbulence on time-evolving, diffusive scalar

fields. The interpretation of the diffusive scalar fields

or a state space as a binary tree structure is an altern-

ative approach compared to existing mixing models.

The characteristic feature of HiPS is that every level

of the tree corresponds to a specific length and time

scale, which is based on inertial range scaling. The

state variables reside only at the base of the tree and

are understood as fluid parcels. The effects of turbu-

lent advection are represented by stochastic swaps of

sub-trees at rates determined by turbulent time scales

associated with the sub-trees. The mixing of adja-

cent fluid parcels is done at rates consistent with the

prevailing diffusion time scales. We present an over-

view of the HiPS model for the simulation of passive

scalar mixing and show the generated scalar power

spectra with forced turbulence. Additionally, prelim-

inary results for the mean square displacement and

scalar dissipation rate will be presented as well as

a model extension to account for variable Schmidt

number effects.

Keywords: differential diffusion, hierarchical

parcel swapping, HiPS, mixing model, passive

scalar mixing

NOMENCLATURE

L0 [m] integral length scale

Li [m] length scale of level i

Lη [m] Kolmogorov length scale

Re [-] Reynolds number

Sc [-] Schmidt number

Y [m] displacement

ki [m−1] wavenumber at level i

n [-] number of levels

u [m/s] velocity

χ [1/s] scalar dissipation rate

ϵ [m2/s3] dissipation rate

Γ [m2/s] scalar diffusion constant

ϕ [-] variable value

ϕ∗∗ [-] variable value before a swap-

ping event
ϕ∗ [-] variable value after a swap-

ping event
τ [s] time

τ0 [s] integral time scale

τi [s] time scale of level i

τmix [s] time since last mixing process

1. INTRODUCTION

Turbulent mixing plays an important role in our

daily life and ranges, as [1] suggests, "from super-

novae to cream in coffee". As of today, there is a

large number of mixing models which can be found

in the literature [2]. Most of them are formulated in

the context of transported Probability Density Func-

tion (PDF) methods. The most distinctive represent-

atives are the Interaction by Exchange with the Mean

(IEM) model [3], the Euclidean Minimum Spanning

Trees (EMST) model [4], Curl’s model [5], and the

Fokker-Planck type models [2].

The central challenge of these stochastic models

is the representation of the mixing processes in a way

that is computationally efficient, and which is able to

retain a significant level of physics. The constraints

for a good mixing model can be derived directly from

the statistical analysis of the conditional fluctuating

diffusion flux in the composition PDF transport equa-

tion, see [2]. Among others, we mention that the

molecular mixing model must not modify the scalar

mean ⟨ϕ⟩, and yield the correct joint scalar dissip-

ation rate χαβ (for scalars α and β). Additionally,

[2] also lists some desirable properties for good mix-
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ing models, among which we mention the bound-

ing of scalars to the so-called allowable region (e.g.

positivity), the locality of the mixing in composition

space, dependence of the mixing rate on scalar length

scales and the incorporation of parametric depend-

encies such as Reynolds Re and Schmidt number Sc

dependencies.

In Curl’s model [5], pairs of particles are ran-

domly selected from an ensemble of particles and

their compositions are fully mixed. An alternative

to Curl’s model is the IEM model [3] and the Lin-

ear Mean Square Estimation model (LMSE) [6]. In

the IEM mixing model, all of the individual particles

gradually evolve to an average state. In terms of de-

sirable properties, Curl’s and the IEM model have

some serious limitations. The biggest deficiency of

these models becomes apparent when considering re-

active flows. The constraint that scalar mixing should

be local in composition space is violated by both

models [2]. The violation of the localness principle

of Curl’s model produces a discontinuous jump of the

fluid-particle composition during a mixing event [2].

This is a clear limitation of the model and causes un-

physical conditions in flame sheet simulations. Cold

fuel can enter into regions of cold oxidizer without

reacting. In reality, the fuel must pass the high tem-

perature region of the flame sheet and is reacting be-

fore it can reach the cold oxidizer. The IEM mix-

ing model also violates the locality principle, since

it predicts that composition variables vary continu-

ously in composition space under the influence of the

mean composition. The Euclidean minimum span-

ning tree (EMST) mixing model is local in compos-

ition space and seeks to address the problems en-

countered in flows with simultaneous mixing and re-

actions [4]. However, as in Curl’s and IEM mixing

models, EMST does not address the problem of the

dependency on scalar length scales directly. Note

that [7] attempted to introduce length scale depend-

ency in the IEM model by means of a spectral model

for the scalar dissipation rate. However, this intro-

duces additional modeling assumptions and complic-

ations.

The understanding of the construction mechan-

ism of the PDF of scalar concentrations, and of its

time evolution is vital [8]. As [8] explains, "history

matters", in the sense that, stirring and diffusion be-

ing two distinctive phenomena, it is an urgent need

to account for the advection of fluid parcels in the

mixing modeling. Statistically, this is a multi-time or

multi-point correlation for the diffusion and disper-

sion of individual fluid parcels [9]. Consider a key

issue affecting the IEM and Curl’s models: the fact

that two fluid parcels that are relatively close to each

other are generally in a similar chemical composition

state. How can it be that these two parcels are in re-

latively similar chemical composition if they never

mixed before? Therefore, "history matters" [8, 9].

However, multi-point correlations are not considered

in pure composition-space stochastic mixing models

such as the Curl, IEM or EMST models.

At this point, the Hierarchical Parcel Swap-

ping (HiPS) [10] model provides an efficient mix-

ing model which is able to incorporates the correct

physics, including the dynamics of the small scales

in physical space. HiPS uses a hierarchical and

stochastic mechanism of swapping fluid parcels to in-

corporate turbulence. Unlike other purely stochastic

composition-space mixing models typically used in

chemical reaction engineering, HiPS incorporates,

by construction, multi-point or multi-parcel correl-

ations. This will allow the understanding of issues

such as scaling laws on different regimes of scalar

turbulence, structure functions, high order statistics,

as well as multi-point Lagrangian statistics.

HiPS as a flexible mixing model could be incor-

porated in the future as a closure for higher fidelity

stochastic turbulence models, hybrid stochastic and

Large Eddy Simulation (LES) approaches, or as a

subgrid closure in hybrid LES or Reynolds-averaged

Navier–Stokes (RANS) methods.

In this work, the functionality of a stand-alone

HiPS formulation is first detailed. Preliminary results

for passive scalar mixing with forced turbulence are

shown. This includes the scalar power spectrum, the

mean square displacement and the scalar dissipation

rate. Additionally, a model extension of HiPS to take

into account differential diffusion (variable Schmidt

numbers) is given in the Outlook.

2. HIPS MODEL

HiPS was developed as a turbulent mixing model

[10] by A.R. Kerstein. The core principle of HiPS is

based on the representation of effects of turbulence

on time-evolving scalar fields by a binary tree struc-

ture. Interestingly, this idea of the binary tree was

postulated by Obukhov [11], according to his consid-

erations on discrete models of turbulence. As in the

discrete representation suggested by [11], dynamic

parcels are tracked, allowing a consistent Lagrangian

treatment. Variable values reside at the base level

of the tree, the leaf level, which is a representation

of the physical solution. An exemplary representa-

tion of the HiPS binary tree with 4 levels is detailed

in Fig. 1a. Assuming that every node has exactly

2 children, there are 8 leaves at the leaf level. The

number of levels n determines the number of leaves

2n−1. In Fig. 1a, each leaf is understood as a fluid

parcel and contains a variable value ϕα, where α is

an index between 0 and 7. The variable values only

reside at the base of the tree.

Every level i of the tree is associated with a spe-

cific length scale Li and time scale τi. The length

scale of a sub-node is simply half the length of the

considered node, though other so-called scale reduc-

tion factors may be used. The associated time scales

follow Kolmogorov’s inertial range scaling law [12],

ϵ ∼
u2

τ
∼

L2

τ3
. (1)
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Figure 1. (a) Schematic illustration of a 4 level binary tree used in HiPS with a swapping event originated at

node 0 with select grandchildren 4 and 6. (b) Schematic illustration of a swapping event originated at node

1 and a subsequent mixing process. The swapping event changes the proximity of adjacent fluid parcels and

requires a subsequent mixing event, which is simply done by intermixing the contents of two adjacent fluid

parcels.

In Eq. 1, u stands for the velocity and ϵ for the dissip-

ation rate which is taken to be constant in the inertial

range. Table 1 lists the length and time scales for an

n level binary tree.

Table 1. Length and time scales of the binary tree

used in HiPS.

level length scale time scale

0 L0 τ0

1 L0/2 τ0/2
2/3

2 L0/4 τ0/4
2/3

i L0/2
i τ0/(2

i)2/3

. . . . . . · · ·

n − 1 L0/2
n−1 τ0/(2

n−1)2/3

The model rules for the representation of the ef-

fects of turbulence, which we will refer to as swap-

ping events, are implemented by first selecting a

grandparent node. A grandparent node is character-

ized by its children and grandchildren, such that only

node 0 on level 0, as well as nodes 1 and 2 on level

1, can be considered grandparent nodes in Fig. 1a.

The grandparent nodes are sampled in time as a Pois-

son process with a mean rate λi = 2i/τi, set by time

scales assigned to each level i of the tree, based on

Kolmogorov’s inertial range scaling law [12],

τi = τ0

(

Li

L0

)(2/3)

. (2)

In this scaling law, L0 and τ0 are the integral length

and time scales assigned to level 0 of the tree, and Li

and τi are the length and time scales of the i-th level

of the tree. Based on Kolmogorov’s hypothesis [13],

the Reynolds number represented by the HiPS tree is

defined by the tree size,

Re3/4 =
L0

Lη
. (3)

Lη stands for the Kolmogorov length scale, which

is the length scale of the leaf level for the case of

unity Schmidt number. The handling of variable

Schmidt numbers is outlined in Section 4. After the

grandparent node is selected, the swapping event is

performed. For this purpose, a grandchild node is

randomly selected from each of the left and right

branches (children) of the grandparent node. The

grandchildren of the grandparent node are then ex-

changed, or swapped along with their respective sub-

trees.

Fig. 1a shows this process at the selected parent

node 0 with grandchildren 4 and 6. Note that nodes 3

and 5 could also have been selected as grandchildren.

The exchange of fluid parcels taking place at the leaf

level, the only physically relevant level of the tree,

and the only level of the tree which is computation-

ally stored, is an abstraction for the scale-reduction

and advective rearrangement of fluid parcels in real

turbulent mixing. Fluid properties stored at parcels

located at the leaf level, undergo local modifications

in their scalar gradients constructed from the discrete

fluid properties stored at the leaf level. Considering

one velocity component as a scalar, this would be the

model analogy of increased strain due to turbulent

advection. This complies with a local wavenumber

increase, as in Kolmogorov turbulence [10].

The example in Fig. 1a shows a swap involving

grandchildren at tree levels higher than the leaf level.

Another situation occurs when the grandparent node

1 is selected, and, as an example, grandchildren

nodes 8 and 9 are selected accordingly. The swap-

ping event takes place at the leaf level, which cor-

responds to the smallest represented physical length

scale. The parcel swapping changes the proximity

within a fluid parcel pair and causes a mixing pro-

cess. This is the case of Fig. 1b. A similar swap-

ping event could occur if node 2 were selected as the

grandparent node.

The mixing process, which is termed mixing
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Figure 2. Illustration of passive scalar mixing in

HiPS. The mixture fraction of the passive scalar is

given at three different times along the fluid par-

cels.

event, is represented by intermixing the contents of

two adjacent fluid parcels (constituting a node-joined

pair). Mixing events can be implemented either in-

stantaneously or at rates consistent with the prevail-

ing diffusion time scales. Instantaneous mixing is a

particularly efficient way to perform mixing. In the

binary tree in Fig. 1a, an instantaneous mixing event

would result in the scalar values of the adjacent par-

cels being replaced with the mean of the two parcels.

One salient feature of HiPS is that the mixing

process itself is not restricted to a specific operation

or rule. In [10, 14], and in the example presented

in Fig. 1b, the mixing rule is equivalent to Curl’s

model. With this, HiPS effectively incorporates all

features of Curl’s model, plus the desired scale loc-

ality, representation of the correct joint scalar dissip-

ation rate and the dependency of the mixing rate on

scalar length scales. The mixing process could also

be adapted to implement any existing mixing rule,

e.g., IEM, without loss of generality. Additionally,

the binary tree representation of the model allows the

most efficient way to treat parcel advection from a

computational point of view. That is, parcel move-

ments can be simply represented by a bit shift in an

index array pointing to locations in the various vari-

able arrays. The efficient implementation of HiPS

and its physical basis opens the door for the evalu-

ation of higher order statistics in scalar turbulence in

large parameter investigations, e.g., the skewness and

hyperskewness of the scalar derivative required in or-

der to discuss anomalous behavior of scalar structure

functions [1].

In Fig. 2, the temporal evolution of a scalar

mixing simulation is shown. The binary tree used

for this simulation spans 12 levels. The plot illus-

trates the mixture fraction of the scalar against the

fluid parcel indices. The scalar profile is initialized

with a step function. All scalar values in the par-

cels at the left-hand sub-tree of the root node 0 are

set to the value of 0 and all scalar values in the par-

cels at the right-hand sub-tree of the the root node

0 are set to the value of 1. This is indicated in Fig.

2 by the blue solid line (0τ0). At a later time (5τ0),

the effects of the swapping and mixing events on the

mixture fraction can be seen. The mixture fraction

approaches the mean value of 0.5 with increasing

time. After sufficiently long time (>10τ0), the flow

is nearly mixed (approaching the mean value of 0.5)

and only minute fluctuations can be seen compared

to the orange curve (5τ0). After a time of >30τ0

(not shown here), everything is completely mixed

and fluctuations can no longer be seen.

3. RESULTS

The following section shows preliminary results

of a passive scalar mixing HiPS simulation. For all

shown results, the same settings were used. The bin-

ary tree spans 16 levels with an associated Reynolds

numbers of approximately one million. The rep-

resented Schmidt number is unity. This causes that

the momentum and mass diffusivity is equal and the

Kolmogorov and Batchelor length scales are located

on the same level. In the Outlook, the treatment of

variable Schmidt numbers is described. The scalar

profile is initialized with a step function profile. All

scalar values in the parcels at the left-hand sub-tree of

the root node 0 are set to the value of 0 and all scalar

values in the parcels at the right-hand sub-tree of the

the root node 0 are set to the value of 1. The simu-

lation considers turbulent forcing, which means that

each time there is a top-level swapping event (swap-

ping at grandparent node 0), a constant is added to

the parcels in a given half of the domain so that their

average is either 0 (left half) or 1 (right half). This

turbulent forcing procedure doesn’t change the over-

all mean and leaves the statistical variance of the sub-

trees unaffected.

3.1. Scalar spectrum

In HiPS, the generation of a scalar spectrum is

not obvious and is reviewed in [10]. The tree struc-

ture induces a reduction of the length scales Li with

increasing levels i of the tree. Every step towards

to the base of the tree results in an increase in the

implied wavenumber ki =
2π
Li

. The mean variance

across all sub-trees 2i at a given level i is defined as

variϕ, where ϕ denotes the scalar field. The HiPS

analog of a scalar power spectrum can be calculated

by E(k) ∼ 1
ki

(vari−1ϕ − variϕ). In this context, E(k)

can be interpreted as scalar energy.

In Fig. 3a, the scalar power spectrum for passive

scalar mixing with forced turbulence is shown. The

dotted line marks the HiPS generated scalar power

spectrum averaged over a time range of 100τ0. The

markers indicate the scalar E(k) and the associated

wavenumber ki for the levels of the tree. A normaliz-

ation with the maximum scalar energy E0 and max-

imum wavenumber k0 is carried out. For compar-

ison purposes, the red line indicates a slope of -5/3

which represents the inertial power spectrum scaling
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(a) (b)

Figure 3. (a) Scalar power spectrum of a passive scalar mixing HiPS simulation with forced turbulence using

a step function initial condition (scalar value of 1 in all parcels at left-hand sub-tree and scalar value of 0 in

all parcels of right-hand sub-tree). The dotted line shows the scalar power spectrum averaged over a time

range of 100τ0. The solid red line demonstrates -5/3 slope for comparison. (b) Mean square displacement

of a passive scalar mixing HiPS simulation with forced turbulence. The blue solid line shows ensemble

averaged HiPS results for the mean square displacement with a sample size of 100 realizations. The 5 gray

dotted lines mark the mean square displacement for 5 independent HiPS realizations. The red solid line

shows the Richardson-scaling law of τ3 for comparison.

E(k) ∼ k−5/3. Fig. 3a demonstrates Kolmogorov’s

inertial range scaling law that is one of the core prin-

ciples of HiPS. Additionally, the fundamental scaling

relation in Kolmogorov turbulence of E(k) ∼ k−5/3 in

the inertial range can be reproduced.

3.2. Richardson dispersion

The dispersion of particles under the influence

of turbulence still poses challenges in fluid dynam-

ics [15]. The dispersion describes how far initially

adjacent particles are spatially separated from each

other. Predictions for the dispersion under the in-

fluence of turbulence of particle pairs dates back to

1926 when Richardson [16] published an empirical

approach where the mean square dispersion grows in

time as τ3.

In Fig. 3b, the mean square displacement ⟨Y2⟩

versus time τ is presented for passive scalar HiPS

simulations. A simple procedure to determine the

dispersion Y of a parcel pair in HiPS is based on the

length scale of the nearest shared parent. As in Fig.

1a shown, for the fluid parcels at nodes 9 and 10, the

nearest shared parent has a length scale of L2 (length

scale of level 2). Similar to this procedure, for the

fluid parcels at nodes 8 and 10, the nearest shared

parent has a length scale of L1 and for the fluid par-

cels at nodes 7 and 13, the nearest shared parent has

length scale L0.

In Fig. 3b, the mean square displacement ⟨Y2⟩

is normalized by the square of the integral length

scale L0 and the time τ is normalized by the integ-

ral time scale τ0. The blue solid line shows ensemble

averaged HiPS results for the mean square displace-

ment with a sample size of 100 realizations. The

5 gray dotted lines mark the mean square displace-

ment for 5 different and independent HiPS realiza-

tions. The deviations of the gray lines from the blue

line shows the randomness of the swapping events

which is also influencing the mean square displace-

ment. The red solid lines shows the Richardson-

scaling law of τ3 for comparison. It can be seen after

a sufficiently long time the mean square displace-

ment follows Richardsons dispersion law. Batchelor

[17] predicted that the mean square displacement for

times shorter than a characteristic timescale grows as

τ2. The characteristic timescale depends on the ini-

tial separation of the considered parcel pair. An in-

vestigation of the τ2-scaling in HiPS is planned next.

A finer temporal resolution of the initial phase and

a wider range of length and time scales may be ne-

cessary for a detailed consideration of the Batchelor

scaling. All in all, it is remarkable that such a simple

and efficient mixing model is able to reproduce the

Richardson dispersion law for the mean square dis-

placement.

3.3. Scalar dissipation rate

The mixing of scalars in turbulent flows is a very

interesting problem which provides a fundamental

understanding of the basic processes involved. A key

quantity in turbulent mixing that directly indicates

the rate of decay of scalar fluctuations is the scalar

dissipation rate χ.

The scalar dissipation rate is defined by [2],

χ =

〈

2Γ
∂ϕ

′

∂xi

∂ϕ
′

∂xi

〉

(4)

In Eq. 4, Γ is the diffusion coefficient of the

scalar and
∂ϕ
′

∂xi
is the fluctuating scalar gradient. In
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Figure 4. (a) Probability Density Function (PDF) of the logarithmic scalar dissipation rate for a passive

scalar mixing simulation in HiPS with a linear y-axis. The orange curve presents a normal distribution

with the mean and standard deviation calculated from the HiPS results. (b) PDF of the logarithmic scalar

dissipation rate for a passive scalar mixing simulation in HiPS with a logarithmic y-axis.

this context, ϕ is often taken as the mixture frac-

tion. Since HiPS uses fluid parcels with proximities

defined by the binary tree structure, a suitable formu-

lation of the scalar dissipation rate in HiPS is needed.

The definition of the scalar dissipation rate in HiPS is

based on a similar scaling approach as in Eq. 1. For

the diffusion coefficient Γ ∼ L2/τ. The analogy to the

fluctuating scalar gradient is given by the changes of

the scalar field by the occurrence of swapping events.

∆ϕ is computed by ∆ϕ = ϕ∗∗ − ϕ∗. ϕ∗∗ is the mixture

fraction of the scalar before a swapping event and ϕ∗

is the mixture fraction of the scalar after a swapping

event.

This results in following relationship for the

definition of the scalar dissipation rate in HiPS.

χ = 2
(∆ϕ)2

τmix

(5)

In Eq. 5, τmix is the time since the last occurrence of

a mixing process at the fluid parcel.

In Fig. 4a and 4b, the PDF of the log of the scalar

dissipation rate is shown. For comparison purposes,

a normal distribution with the mean and standard de-

viation calculated from the HiPS results is illustrated.

Figs. 4a and 4b indicates that the commonly accepted

log-normal distribution of the scalar dissipation rate

χ is preserved. Additionally, HiPS exhibits a negat-

ive skewness in Fig. 4b, which is also seen in exper-

iments and DNS [18].

4. OUTLOOK

In the current HiPS formulation, only unity

Schmidt number passive scalars can be considered.

This means that the Kolmogorov and Batchelor

length scales are located on the same level. Arbit-

rary Schmidt number effects can be incorporated in

the model by modifying the micromixing and swap-

ping procedure, effectively allowing the creation of

additional and intermediate levels in the binary tree.

For the case of Sc < 1, the scalar has a very high dif-

fusivity and the Batchelor length scale is larger than

the Kolmogorov length scale. In this case, the mixing

process can take place on levels above the leaf level

(above the Kolmogorov scale).

The contrary is the case if Sc > 1. The diffusiv-

ity of the scalar is low and the Batchelor length scale

is smaller than the Kolmogorov length scale. For the

binary tree representation, this implies the existence

of additional tree levels below the existing leaf level,

which are turbulently advected, but only by swapping

events with grandchildren on Kolmogorov or larger

length scales. This implies that the nodes at these

levels may be swapped as a consequence of a swap-

ping event on upper tree nodes, but they can not be

selected as children nodes themselves. Mixing pro-

cesses, nonetheless, given by the set of mixing rules

implied in the model, may still take place at these

nodes below the leaf level.

The model extension for the treatment of vari-

able Schmidt numbers opens the door for the invest-

igation of differential diffusion effects, i.e., simultan-

eous mixing of scalars with different Schmidt num-

bers. Differential diffusion effects could be simulated

in practice by specifying different mixing rules for

each scalar in the binary tree. This allows investiga-

tion of multi-parcel correlations and scaling laws at

very large or small Reynolds and Schmidt numbers.

5. SUMMARY

HiPS is a novel, computationally efficient and

physics-based mixing model which at the same time

fulfills constraints for good mixing models and sev-

eral desirable properties of mixing models like loc-

ality of mixing in composition space, dependence of

the mixing rate on scalar length scales and the incor-

poration of parametric dependencies such as Reyn-

olds and Schmidt number dependencies. Addition-

ally, the possibility to consider a large range of scales
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while being computationally tractable is a significant

advantage.

The results show noticeable agreement with

known theories in passive scalar mixing. Given

the simplicity of the model, a reproduction of the

Richardson dispersion in passive scalar mixing and

the preservation of a log-normal distribution of the

PDF of the scalar dissipation rate are remarkable

results. The extension to variable Schmidt num-

bers as described in the outlook is a necessary next

step in the stand-alone HiPS formulation to investig-

ate multi-parcel correlations and scaling laws at very

large or small Reynolds and Schmidt numbers.

It is noted that HiPS has also been formulated

as a turbulence model in [14], by means of the in-

corporation of momentum equations, and the use of

a stochastic sampling procedure for swapping events

analogous to the implementation of eddy events in

the One-Dimensional Turbulence model [19]. A fu-

ture application of HiPS could be the coupling with

LES or RANS in a top-down or bottom-up approach,

or by means of a sub-grid mixing model in PDF

transport methods.
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