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ABSTRACT

The classification capabilities of artificial neural
networks (ANNs) were examined in the study fo-
cusing on recognizing 2-dimensional percolating lat-
tices. The performance of a classifier based on a
multi-layer perceptron (MLP) was compared to a
classifier based on a convolutional neural network
(CNN). A large number of lattices were generated
with different occupation probabilities from 0 to 1 to
form a dataset that was split in three different ways
to find out the possible difficulties of the learning.

While the classification recall was above 77%
for each ANN in each case, significant differences
were seen when the data were imbalanced. In such
cases, the CNN-based classifier clearly outperformed
the one based on MLP in recognizing the lattices of
the underrepresented kind.

When the ANNs were trained on 4397 samples
drawn randomly uniform from the full dataset, both
of the networks achieved a similar recall being the
CNN the better with a recall of ≈ 0.93. Moreover,
the CNN-based classifier achieved a higher recall in
general in all three cases suggesting its superiority
compared to the MLP for recognizing percolating lat-
tices.

Keywords: artificial neural networks, convolu-

tional neural network, machine learning, multi-

layer perceptron, percolation, supervised learning

1. INTRODUCTION

The development and usability of machine learn-
ing (ML) algorithms went through a massive upsurge
in the last decades due to the increasing computa-
tional capacity and the rapidly growing amount of
available data. The main tools can be roughly di-
vided into three large groups: supervised, unsuper-

vised, and reinforcement learning. Supervised tech-
niques fit labeled datasets while unsupervised meth-
ods are able to learn useful features in the absence
of labels. Reinforcement learning is based on agent-
environment interaction which is useful for learning
control policies or to learn from such datasets where
the loss function cannot be described by an exact
mathematical formula.

Artificial neural networks (ANNs) are widely
used for classification due to the fact that they are
universal function approximators [1]. Owing to this
property, ANNs were successfully applied in the field
of computer vision, natural language processing, re-
commendation systems, etc. Besides these, ANNs
have also been adapted in science and engineering –
such as in this case – for the classification of percol-
ating lattices [2, 3, 4, 5].

Percolation theory is applied in the field of mer-
cury porosimetry (among others) that was invest-
igated by Bak and Kalmár-Nagy in [6]. Mercury
porosimetry is applied to specify the pore size distri-
bution of rock samples primarily in the oil industry.
During the process, the mercury is forced into the
sample with constantly increasing pressure while the
volume of the injected mercury is measured vs. the
applied pressure, which is the saturation curve. In
practice, this curve is assumed to be directly related
to the cumulative pore size distribution. On the other
hand, the real distribution of the pore size does not
coincide with the cumulative pore size distribution
because of the “non-accessibility” of the pores at a
given pressure. The goal of the study by Bak and
Kalmár-Nagy was to determine a more accurate cu-
mulative pore size distribution which was achieved
by treating the mercury propagation as a percola-
tion process. Their results showed a good agreement
between the experimental saturation curve and those

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors



obtained from their method [6, 7, 8].
Bottiglione et al. [9] used percolation theory

and contact mechanics to investigate fluid leakage
through seals. They observed that it is not enough
to have a partial connection between the sealing sur-
faces (because of the surface roughness) but a chan-
nel has to be also formed from the previously in-
dependent chambers to have leakage. This phe-
nomenon can be effectively described by percolation
theory.

Zhao et al. [10] studied the conductivity of liquid
metal embedded elastomers (LMEEs). These elast-
omers have attracted interest from researchers due to
their low elastic modulus, tunable electrical and/or
thermal conductivity, and high flexibility. One im-
pressive feature of LMEEs is that their electrical res-
istance stays constant when stretched, which means
that the resistance is no longer proportional to the
length of the conductive material if only a moderate
length change occurs. This feature makes LMEEs
desirable in real-world applications. During the re-
search, finite element analysis was carried out to ex-
amine the electromechanical coupling response of a
percolated liquid droplet. After that, they generalized
the results to a network of LMEE droplets.

Salt caverns are a promising opportunity to store
renewably produced hydrogen underground to re-
duce CO2 emissions by enhancing the utilization of
volatile renewable energy sources. Rock salt is able
to reduce the infiltration of hydrogen into the cav-
ern walls due to its low permeability. Nevertheless,
the pressure-driven percolation effect may form dis-
crete pathways for the fluid through the walls which
cause damage in the cavern. Zill et al. [11] cre-
ated a model which shows good agreement with the
pressure-driven percolation of hydrofracturing ex-
periments.

Based on the researches mentioned above, the
advantage of training of neural networks to learn per-
colation is unambiguous. Here we focus on using
two types of neural nets, the multi-layer-perceptron
(MLP) and the convolutional neural network (CNN)
with approximately the same number of trainable
parameters, train them for the classification of per-
colation lattices, and compare the accuracies of these
nets. After that, we investigate the effect on the ac-
curacy of different training datasets.

The outline of this paper is as follows. In Sec. 2
we introduce the basic concept of percolation theory
and the algorithm we used to generate the percol-
ating lattices for classification. Sec. 3 contains the
general background for those kind of artificial neural
networks that were used in this study. After that, we
describe the training dataset and the parameters of
the neural nets in Sec. 4. Sec. 5 and Sec. 6 contain
the results and the conclusion, respectively.

2. PERCOLATION THEORY

Percolation theory and percolation models have
been developed for a differing range of applications

such as fractal diffusion, the conductivity of semi-
conductors, or modeling fluid propagation through
a porous medium. Percolation theory studies the
properties of lattice clusters. The simplest problems
in percolation theory are site-percolation and bond-
percolation whose schematics can be seen in Fig. 1.

Figure 1. Bond percolation (left) and site percola-

tion (right).

These percolation models deal with lattices in
which a site/bond can be occupied with probability
p (occupation probability). A group of neighboring
occupied sites/bonds is called a cluster. A cluster
that connects the top and bottom sides of the lattice
is called spanning cluster. The existence of a span-
ning cluster means that the modeled fluid percolated
through the lattice. Fundamental questions in percol-
ation theory is whether a spanning cluster exists and
how the existence of spanning clusters is dependent
on the occupation probability p. There is a percola-
tion threshold (pc) which refers to the critical occu-
pation probability. Under this value, the probability
that a spanning cluster exists is zero in infinite lat-
tices. On the other hand, for p > pc, the probability
that a spanning cluster exists is one. Thus, percola-
tion theory can be thought of as the study of a geo-
metrical phase transition, since at a critical fraction of
addition the network of small, disconnected clusters
merge into a spanning cluster (visual representation
can be seen in Fig. 2).

Figure 2. Lattices with different occupation prob-

abilities.

3. ARTIFICIAL NEURAL NETWORKS

Feed-forward artificial neural networks stem
from biological neural networks, but the similarities
should be examined only from a sufficiently distant
view. As it was mentioned before, neural nets are
widely used due to their flexibility which ensures the
fact that the architecture can be constructed from dif-
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ferent types of building blocks. In this research, the
multi-layer perceptron and the convolutional layer
are used in the network architecture and the theory
behind these building blocks is detailed here.

3.1. Multi-layer perceptron

The basic calculation unit of such a network is
the perceptron which receives different signals on
its input, multiplies each input with a correspond-
ing weight, sums them up, and applies a nonlinear
function on the summation. The nonlinear function
is called activation function in the machine learn-
ing terminology and its output is the output of the
perceptron. The weights quantify the importance of
the specific input values regarding to the output and
the activation function ensures that the summed out-
put of multiple perceptrons can mimick the output
of general functions. The schematic of a standalone
perceptron is shown in Fig. 3.

Figure 3. Schematic representation of a per-

ceptron.

In order to enable the higher level feature and
pattern recognition with a neural network, the per-
ceptrons are arranged into layers and layers are
stacked into a network which is called multi-layer
perceptron. Such a network is shown in Fig. 4.

Figure 4. Example of a multi-layer perceptron.

With this arrangement, the network is able to
learn abstract features from the data, which is desir-
able in real-world applications. The first layer of a
network is the input layer, thereafter come the so-
called hidden layers and at the end of the network
is the output layer. If every neuron inside a specific
layer is connected to every neuron in the previous
layer (in other words: if the output signal of the neur-
ons in the preceding layer is fed to the input of all
the neurons in the actual layer), the two layers are
densely or fully connected.

To evaluate the accuracy of a neural net, a loss
function (or cost function) is needed, which ex-
presses the difference between the ground truth and
the output calculated by the network regarding to
a specific input. The loss function can be minim-
ized by finding the optimum set of weights for the
perceptrons in the ANN. As the ANN builds up
from elementary activation functions (like the sig-
moid or the tanh function), the contribution of each
perceptron to the overall error on the output can be
calculated by the backpropagation of the error calcu-
lated with the loss function. This process is called
training in the machine learning terminology. Since
calculating the gradient with respect to the loss is
cheap, even traditional gradient seeking methods like
gradient descent are suitable for training ANNs.

3.2. Convolutional neural network

Convolutional layers are able to capture the fea-
tures of the data with less layers compared to MLPs
if the relevant features are small compared to the di-
mensionality of the input which means the size of the
input of a layer (or the network). The most obvious
example is image recognition where the elementary
building blocks like edges are small compared to the
full image.

Figure 5. Schematic of the convolutional filter.

The convolutional layer applies a filter on the in-
put where the filter size is smaller than the input size.
The output of the layer is the convolution of the filter
and the input or in other words it is the element-wise
product of the filter and the appropriate parcel of the
data where the filter is applied which leads to the re-
duction of the dimension as seen in Fig. 5.

This structure allows the filters to learn smaller
features that are reoccurring in the input regardless
on their exact location. This property makes them

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors



ideal for image recognition tasks where topologies
built on convolutional neural networks dominate the
state-of-the-art in the recent years [12, 13, 14].

4. METHODOLOGY

4.1. Datasets

The dataset for training and evaluating the clas-
sifier is based on lattices generated by the Hoshen-
Kopelman algorithm [15] . 5000 8-by-8 lattices
were generated with different occupation probabilit-
ies (from 0 to 1 with stepsize 0.01) and they were
labeled according whether they are percolating or
not. The duplicates were filtered thereafter in order
to avoid biased data that yielded 220996 unique lat-
tices. The filtered dataset is referred to as the full
dataset. The distribution of the percolating and the
non-percolating lattices in the full dataset are seen in
Fig. 6.
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Figure 6. Histogram of the percolating and non-

percolating lattices in the full dataset.

For 2D lattices the critical occupation probabil-
ity is ≈ 0.593. Fig. 6 shows that non-percolating lat-
tices are over-represented where occupation probab-
ility is subcritical and percolating lattices are over-
represented for supercritical occupation probabilities
(the drops for occupation probabilities near 0 and 1
are due to the much smaller number of lattices result-
ing from the removed duplicates).

The dataset was split to training, validation, and
test sets in three different ways to examine the cap-
abilities of the ANNs in case of different data distri-
butions. These cases are referred to as case A, case

B, and case C. As the aim of the study was to com-
pare the multi-layer perceptron and the convolutional
neural network in terms of prediction accuracy, the
number of training samples was kept low compared
to the test samples in each of the cases.

In case A, training data were selected as the por-
tion of the full dataset with an uniform random dis-
tribution. The 1% of the full data were allocated for
training and an additional 1% of the data were alloc-
ated for validation. The rest of the data were used
purely for testing the accuracy of the trained models.
case A models such cases where samples of all kinds
(all occupation probability) are available for training;
hence, it is considered as an easy case to learn.

In case B, lattices generated by occupation prob-
abilities smaller than 10% and greater than 90% were
allocated for training and validation while the rest of
the data were allocated for testing. The training-to-
validation ratio was 4 : 1. In this case, the model
was trained on sparsely and densely occupied lattices
only and was tested on almost every kind of lattices
thereafter. Thus, it is considered a harder case to
learn than case A.

Lattices belonging to most of the occupation
probabilities were excluded from the training data in
case B. This difficulty was tried to increase in case

C by including lattices with such occupation prob-
abilities that yield to an imbalanced training dataset.
Training data were selected according to occupation
probability between 20% and 45% which yielded a
skewed data distribution. The rest of the data were
used for testing, the training-to-validation ratio was
again 4 : 1.

Both in cases B and C the validation data were
selected according to a uniform random distribution
from the data allocated for training and validation.
The data distributions are visualized in Fig. 7 with
the number of samples indicated in the captions of
the histograms.

4.2. Neural network architectures

There are many practical applications that could
benefit from a classifier that can decide whether a
2D lattice percolates or not. However, there is no
best practice on creating such classifiers; hence, two
ANNs built from different kinds of layers were in-
vestigated in this study to find out whether CNNs are
outperforming MLPs in this task as they do in com-
puter vision problems. In order to do a fair compar-
ison, the architectures were created in such a way that
the number of the trainable parameters – that refers
to the expression capacity of the ANN – were almost
the same for the two networks. Moreover, the activa-
tion functions of the artificial neurons were rectified
linear units (ReLU) in both networks. The lattices
were fed to the classifiers as 2D arrays and the clas-
sifiers gave a probability p ∈ [0, 1] on whether the
lattice is percolating in return. The error of the pre-
diction was quantified with the binary cross-entropy
during the training and this error was backpropagated
to the individual neurons.

The lattices were flattened in the first place in
the MLP and the 64 input dimensions were fed to 2
hidden layers. Both layers utilized 4 neurons with
ReLU activations and the prediction was given by a
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Figure 7. Histograms of the training/validation data (trn/vld) and the test data (tst) for the different cases.

single neuron activated by the softmax function.
The CNN was able to handle the lattices without

transformation by nature; hence, the input was dir-
ectly fed to the convolution layers. 3 convolution
layers were utilized in sequence with 3 filters of size
2x2, and a convolution layer with only 1 filter of the
same size as before. The output of the last convo-
lution was flattened yielding a 16 dimensional lat-
ent representation of the lattice. This representation
was fed to 2 dense layers with 8 and 4 neurons in se-
quence. The output of the last dense layer was fed to
a classifying neuron utilizing the softmax function as
its activation as in the case of the MLP.

The number of trainable parameters were 284
and 282 for the MLP and the CNN, respectively.
These numbers are so small that no overfitting of the
ANNs was suspected; hence, no attempt was taken
in order to regularize the weights during the train-
ing. The weights were aligned according to the error
calculated on the training data and the out-of-sample
accuracy of the network was calculated on the valid-
ation data. The training was stopped after the valida-
tion accuracy did not rose for 30 consecutive epochs
while the weights of the classifier were saved when
the validation accuracy reached its maximum.

5. RESULTS

The MLP and the CNN were trained multiple
times for each cases to examine the effect of ran-
dom weight initializations. As the loss surface can
have many local minima, different weight initializa-

tions can lead to different results even if the topology
and the other hyperparameters are kept the same.

This disadvantageous behavior could be ob-
served in case B and in C, but could not be observed
in A. Hence, the trainings were repeated three times
for case B and for case C for both topologies and the
results were averaged over the repetitions.

The trainings were similar regarding the training
and validation losses and the accuracies; hence, only
a typical learning curve is depicted in Fig. 8. The
closeness of the training and the validation curve in-
dicates that omitting the regularization of the train-
able parameters was a safe choice for this study.

In order to compare the accuracy of the different
architectures in the different cases, the model weights
were loaded back after each training and the model
performance was evaluated on the test data. The res-
ults are visualized as confusion matrices in Fig. 9,
while the corresponding data distributions are to be
found in Fig. 7.

A good classification accuracy was achieved
with both topologies in case A. This case was the
only one wherein the training and the testing data
shared the same distribution. Despite the size of the
training data was greatly reduced compared to the
other cases, it was not a difficulty for neither of the
ANNs to achieve a recall over 90% for percolating
and non-percolating lattices.

Case B presented a harder task and this fact is re-
flected in the recall metrics as well. Both topologies’
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Figure 8. Learning curves of a typical training.

performance degraded in classifying non-percolating
lattices but the MLP showed a worse performance
than the CNN. However, the MLP performed better
in classifying percolating lattices in contrast. Data
distribution explains the bias of the recall towards the
percolating lattices: these kind of lattices are a bit
over-represented in the training and validation data-
set compared to the non-percolating ones.

While the recalls provided by the MLP and the
CNN were comparable in B, the CNN clearly outper-
forms the MLP in case C. The training and valida-
tion dataset contained almost twice as much lattices
than in case B but the data distribution was strongly
skewed as depicted in Fig. 7. While the MLP was
able to achieve a recall of almost 80% for the un-
derrepresented kind of data (percolating lattices), the
CNN achieved a recall of 93.9% for the same lattices.

6. SUMMARY

The capabilities of ANNs were examined in this
study on the classification of percolating lattices. The
focus was on the comparison of the MLP and the
CNN layer types as the latter represents the state-of-
the-art for common image recognition tasks.

Two different classifiers were constructed with
similar modeling capacity based on the two layer
types and a comprehensive dataset was generated in-
cluding more than 220000 unique 2D lattices with
occupation probabilities spanning the range from 0
to 1. Three different test cases were set up to find
out the behavior of the classifiers when their training
data suffers from different difficulties.

Both the MLP and the CNN performed well
when they were trained on a reduced dataset, achiev-
ing a recall above 90% for each kind of lattices. Al-
though the CNN recognized non-percolating lattices
a slightly better than the MLP, the difference was
considered marginal.

The second test case contained a slightly im-
balanced dataset but with training samples selected

with extreme occupation probabilities that were close
either to 0 either to 1. The CNN classifier gave
slightly more accurate predictions for the underrep-
resented type of lattice than the MLP but both of the
ANNs showed a degraded accuracy on recognizing
that kind of lattice compared to the other.

The third case contained a larger but strongly
imbalanced dataset than the second case. The CNN
clearly outperformed the MLP in this case by giving
a decent (above 90%) recall on both the under- and
the overpresented kind of lattices.

The overall high accuracy of the CNN-based
classifier and its superiority compared to the clas-
sifier based on MLP suggests that CNNs should be
considered in the first place for the recognition of
percolating lattices. This decision is also supported
by the fact that real-world datasets are often imbal-
anced as is the case e.g. with the recognition of sur-
face cracks in rocks [16]. When the imbalanced data
cannot be cured with data augmentation, CNN-based
classifiers can still deliver acceptable accuracies ac-
cording to the findings of the present study.
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