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ABSTRACT

Multiple approaches exist for calculating the
time-dependent aerodynamic loads of thin, flex-
ible structures subjected to airflow. For calculating
the aerodynamic loads, analytical, semi-empirical,
CFD-based, and various reduced-order models ex-
ist. These models are usually only applicable for
small deformations; in the case of large deform-
ations, calculating aerodynamic loads is computa-
tionally costly. In this paper, a data-based identi-
fication method to calculate the aerodynamic loads
was applied. The most significant advantage of this
technique is that it is also accurate for large struc-
ture deformations. After the initial data fitting pro-
cess, the simulations run very quickly. To create
the data-based model, we used high-precision valid-
ated CFD simulations. The SINDy (Sparse Identi-
fication of Nonlinear Dynamics) algorithm was util-
ized for the model construction. Multiple optimiza-
tion routines were used to fit the aerodynamic model,
e.g., LASSO (Least Absolute Shrinkage and Selec-
tion Operator) and STLSQ (Sequentially Threshol-
ded Least Squares). As the result of the paper, we get
a data-based aerodynamic model for a single config-
uration and a compact process, with which the aero-
dynamic loading of arbitrary moving structures can
be calculated in the time domain.

Keywords: Aerodynamics, Aeroelasticity, Non-

linear dynamics, Sparse identification

NOMENCLATURE

NRMS [1] normed root mean square er-
ror

CL [1] lift coefficient
H1, Ai [1] flutter derivatives
L [N] lift force
M [Nm] aerodynamic moment
b [m] half chord length

cα [Ns/rad] damping of the pitch DoF
ch [Ns/m] damping of the heave DoF
ci [SI] coefficients of the ROM
h [m] heave
k [1] Reduced frequency
kα [N/rad] stiffness of the pitch DoF
kh [N/m] stiffness of the heave DoF
m [kg] mass
q [1/(s2rad3)] stiffness coefficient of the

cubic spring
U [m/s] wind velocity
α [rad] pitch angle
ω [rad/s] angular frequency
ωα [rad/s] angular natural frequency of

the pitch DoF
ωh [rad/s] angular natural frequency of

the heave DoF
ρ [kg/m3] density
ξα [1] damping factor of the pitch

DoF
ξh [1] damping factor of the heave

DoF
Iα [kgm2] moment of inertia

1. INTRODUCTION

Aerodynamic models are essential for design-
ing aircraft, evaluating static and dynamic aeroelastic
stability, and developing feedback control laws. Ob-
taining accurate and efficient aerodynamic models
has been a fundamental objective of research efforts
in aeronautics over the past century [1]. Closed-form
solutions for the attached incompressible unsteady
flow problem around a two-dimensional (2D) airfoil
exist in both the frequency and time domains [2].

Wagner [3] developed a model for the unsteady
lift on a two-dimensional flat plate for arbitrary
small-amplitude pitching motion. He computed the
effect of idealized planar wake vorticity on the cir-
culation around the plate in response to a step in the
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angle of attack analytically. After this, the response
to arbitrary motion could be constructed by convo-
lution with this indicial response. Ten years later,
Theodorsen [4] derived a complementary model to
study the aeroelastic problem of flutter instability in
the frequency domain. Wagner’s and Theodorsen’s
theories were derived analytically for an idealized
two-dimensional flat plate moving through an invis-
cid, incompressible fluid. The motion of the flat plate
is assumed to be infinitesimal, leaving an idealized
planar wake.

The finite state flow model offers state equations
for the induced flow field itself [5]. The governing
equations of the finite state flow model were derived
directly from the potential flow equations (either ve-
locity or acceleration potential). Thus, no interme-
diate steps were invoked in which restrictions were
placed on airfoil motions. The theory is an arbitrary-
motion theory from the outset. In contrast to Com-
putational Fluid Dynamics (CFD) and vortex lattice
methods, the states represent induced flow expansion
fields rather than velocities at discrete nodes. As a
result, the states are hierarchical, and the equation
coefficients are known in closed form. No numerical
fitting of frequency-response or indicial functions is
needed to apply the finite state flow model.

The dynamic stall phenomenon and its import-
ance for load calculations and aeroelastic simulations
are well known. Different models exist to model the
effect of the dynamic stall. For dynamic stall, the
physics of the flow separation and stall development
differs fundamentally from the stall mechanisms ob-
served for the same airfoil under static (quasi-steady)
conditions [6].

The effect of dynamic stall can be defined as a
delay in the stall onset: stall occurs at a higher angle
of attack than for the static stall case. A strong vor-
tex is formed at the leading edge that separates and
is convected along the suction surface of the airfoil.
This event begins with a rapid increase in lift and
ends with complete flow separation and catastrophic
loss of lift as the vortex disturbance is convected past
the trailing edge of the airfoil. This behavior can pro-
duce hysteresis loops in the force coefficients, pro-
ducing cyclic pressure loads that are not predicted
by conventional lift and drag data obtained at steady
angles of attack [1].

The ONERA semi-empirical model [7] describes
the unsteady airfoil behavior employing a set of non-
linear differential equations. A first-order linear dif-
ferential equation describes the inviscid (attached
flow) aerodynamic contribution, and a second-order
differential equation describes the nonlinear viscous
effects associated with the stall.

The Beddoes–Leishman method [8] is a dynamic
stall model where the emphasis is on a more accur-
ate and complete physical representation of the over-
all unsteady aerodynamic problem but still in a form
that keeps the complexity of analysis down to min-
imize computational cost. In this way, it attempts

to overcome the limitations of other models where
many empirically determined coefficients limit the
method’s applicability. The Beddoes–Leishman
model essentially consists of four subsystems: 1. an
attached flow model for the unsteady (linear) aero-
dynamic forces based on Duhamel superposition, 2.
a separated flow model for the nonlinear aerody-
namic forces, 3. a dynamic stall onset model, 4. a
dynamic stall model for the vortex-induced aerody-
namic forces.

The nonlinear, second-order dynamic stall model
developed by H. Snel [9, 10] is an example of a
modern semi-empirical engineering model used to
include dynamic stall effects in aeroelastic response
codes for wind turbines. This model uses no airfoil-
specific parameters in its modeling equations but still
can predict the dynamic stall with the same accuracy
as models that require such input. This characteristic
makes Snel’s dynamic stall model desirable for ap-
plication in an aeroelastic design code where numer-
ous airfoil profiles need to be evaluated, negating the
need for any parameter identification from dynamic
wind tunnel tests.

Lelkes and Kalmár-Nagy modeled the aerody-
namic forces for large angles of attack as a piecewise
linear function, which was able to capture the phe-
nomenon of dynamic stall [11].

First, the applied data-driven system identifica-
tion method is described in this paper. Then, the
identified models are presented for three different re-
duced frequency values compared with the simula-
tion data. Afterward, the models are applied for a
simple 2-DOF aeroelastic model of a flat plate.

2. SPARSE IDENTIFICATION OF NON-

LINEAR DYNAMICAL SYSTEMS

Traditionally, dynamical systems are modeled by
first principles, such as Newton’s second law. How-
ever, this approach can be time-consuming while re-
quiring expert knowledge, and the resulting mod-
els can be too simplistic to capture the real-world
dynamics accurately. With the advent of powerful
computers and efficient machine learning algorithms,
modeling based on real-world measurement data be-
comes possible.

In this paper, we use the Sparse Identification of
Nonlinear Dynamical systems (SINDy) method, in-
troduced by Brunton et al. [12, 13], and later refined
in the work of Champion et al. [14]. An overview
of the method, as well as the description of the Py-
thon package that is used in our paper, is given by
Silva et al. [15]. Several alternate versions of this
method have been proposed. Kaheman et al. [16] in-
troduced SINDy-PI, which is a parallel version that
can be used to identify implicit dynamics while be-
ing robust to noise. Kaptanoglu et al. [17] proposed a
modification of the SINDy algorithm, which is useful
for identifying globally stable models. The SINDy
method can also be modified to be applicable to vari-
ous boundary value problems, as shown by Shea et
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al. [18].
An overview of data-driven methods in

aerospace engineering is given by Brunton et al.
[19]. In the work of Sun et al. and Pohl et al. [20, 21]
the SINDy method is used to derive polynomial
models for the lift of an airfoil.

Here, a brief introduction to SINDy is given;
more information can be found in the articles men-
tioned above. Our aim is to determine a model for a
dynamical system in the following form:

ẋ(t) = f
(

x, t
)

, (1)

where x is the vector of the state variables, and t is the
time variable. We want to determine the function f .
The idea of the SINDy method is that usually, f has
a sparse representation in the space of the possible
functions. Due to this, a sparse regression is used to
discover f . Let us denote
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Ẋ =
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where we measure the state vector x at t1, . . . , tn time
points, and either also measure the derivative of the
state vector, or calculate it numerically from x. The

feature library is denoted by Θ
(

X
)

, for example, for

a polynomial library

Θ

(

X
)

=
[

1 X XP2 · · ·
]

, (4)

where XP2 denotes the second order polynomials
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(5)

We are searching for the vector Ξ =
[

ξ1 · · · ξm
]

Ẋ = Θ
(

X
)

Ξ. (6)

Once this is found, a model can be constructed as
follows

ẋ = f
(

x
)

= Θ
(

xT
)

Ξ. (7)

For real-world data, usually X, and Ẋ are contamin-
ated with noise, so instead of equation (6) we have

Ẋ = Θ
(

X
)

Ξ + ηZ, (8)

where noise is modeled as a Gaussian distribution
with zero mean and η noise magnitude. Numer-
ous objective functions can be used for the sparse
regression, we have primarily used the sequentially

thresholded least squares (STLSQ), and the least ab-
solute shrinkage and selection operator (LASSO),
which are respectively l2, and l1 regularized regres-
sions promoting sparsity [12], these will be detailed
in the next section.

2.1. SINDy optimizers

The LASSO optimizer is a simple l1 regularized
regression with the following objective function
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where y is the training data of the algorithm, Ẋ in
equation (8), X is the function library Θ(X), w is the
vector of weights Ξ, and λ is the regularization para-
meter. The norms are defined the following way
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where x =
[

x1 x2 . . . xn

]T
. The other optimizer

that we have used is the STLSQ, which was origin-
ally proposed to be used with the SINDy algorithm
in [12]. It has the following objective function

1
2n

∣

∣

∣

∣

∣

∣

∣

∣

y − X w
∣

∣

∣

∣

∣

∣

∣

∣

2

2
+ λ

∣

∣

∣

∣

∣

∣w
∣

∣

∣

∣

∣

∣

2

2
. (12)

It can be observed that this is very similar to the ob-
jective function that LASSO uses. The only differ-
ence is that STLSQ utilizes an l2 regularization in-
stead of an l1. However, there is one more import-
ant difference. The algorithm works by finding the
optimum weights for the objective function and then
masking out every coefficient that is lower than a set
threshold. Afterward, it iterates these steps for the
non-masked-out coefficients. This iteration proced-
ure is useful to promote sparsity in the learned model.

3. IDENTIFIED MODELS

The CFD simulations that the models have been
trained on were obtained by prescribing a sinusoidal
oscillation for the angle of attack of the flat plate.
The details of the CFD simulations are described in
[22, 23].

Data were obtained for three oscillation amp-
litudes and angles of attack, resulting in 9 differ-
ent time series of the aerodynamic lift force. Three
models were identified, one for each frequency. The
frequency was nondimensionalized; the resulting re-
duced frequency is defined as k = ωb

U , where b is
the half chord length, U is the wind velocity, and ω
is the angular frequency of the oscillation. Reduced
frequency is the dimensionless number used in gen-
eral for the case of unsteady aerodynamics and aer-
oelasticity [6]. It is one of the parameters that defines
the degree of unsteadiness of the problem. The aero-
dynamic model equations were created by using the
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(a) k = 0.1, αamp = 2◦ (b) k = 0.1, αamp = 5◦ (c) k = 0.1, αamp = 10◦

(d) k = 0.2, αamp = 2◦ (e) k = 0.2, αamp = 5◦ (f) k = 0.2, αamp = 10◦

(g) k = 0.5, αamp = 2◦ (h) k = 0.5, αamp = 5◦ (i) k = 0.5, αamp = 10◦

Figure 1. Comparison of the identified ROM with the CFD simulation for k ∈ {0.1, 0.2, 0.5} and αamp ∈

{2◦, 5◦, 10◦}.
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Reduced frequency c1 c2 c3 c4 c5 c6 c7

k = 0.1 0.213 5.42 0 249 0 0 -1.52·106

k = 0.2 12.2 0 -2.70 0 0 0.799 0
k = 0.5 4.01 6.32 -1.34 0 -56.5 0.463 0

Table 1. The coefficients of the reduced-order model Eq. (13).

state variables α, α̇, CL, where α, α̇ are considered
as known inputs, which can be measured. The gen-
eral form of the Reduced-Order Model (ROM) can
be written as

ĊL(α, α̇,CL; k) = c1(k)α + c2(k)α̇ + c3(k)CL

+c4(k)α2 + c5(k)αα̇ + . . . ,

(13)

where a lexicographic ordering was used for the coef-
ficients ci(k), which are listed in Table 1. The fitting
procedure is relatively fast, and it takes only a couple
of seconds with given optimization parameters such
as λ in equations (9), (12).

For the reduced frequency k = 0.1, k = 0.2, k =
0.5, the lift coefficients from the CFD simulation and
the fitted model as the a function of the angle of at-
tack for oscillation amplitudes αamp ∈ {2◦, 5◦, 10◦}
are shown in Figure 1. These reduced frequen-
cies were chosen because they cover the region of
possible values during flutter. We determined the
Normed Root Mean Squared Error (NRMS) of the
aerodynamic models using the formula

NRMSCL =
1

CLmax −CLmin

√

√

∑N
i=1

(

CL − ĈL

)2

N
,

(14)

where N is the number of data points, CL is the
CFD simulation data, ĈL, is the predicted value by
the ROM simulation, CLmax is the maximum, while
CLmin is the minimum value of the CFD simulation
data. The NRMS for the three models can be found
in Table 2. It can be observed that the models provide
an excellent fit and can reproduce the nonlinear be-
havior associated with the high angle of attack and
high-frequency oscillations.

Amplitude k = 0.1 k = 0.2 k = 0.5

2◦ 2.53% 1.88% 1.66%
5◦ 2.45% 2.25% 0.94%

10◦ 3.44% 4.62% 1.61%
Table 2. The NRMS values of the identified aero-

dynamic models.

4. TEST CASES

In this section, we apply the identified aerody-
namic models to a 2-DOF aeroelastic system. In the
model, α describes the pitch (positive clockwise),
while h is the plunge displacement (positive down-
ward). The mass is m, the moment of inertia around

the pitching axis is Iα, the semichord of the wing is
b. The spring, and the damping coefficient for the
plunge DOF is kh, ch, respectively, while these for the
pitch are kα(α), cα [24].

Figure 2. The 2-DOF flat plate

Equations of motion for a simple 2-DOF flat plate
(see Figure 2) can be written generally as [25]:

mḧ + chḣ + khh = −L, (15)

Iαα̈ + cαα̇ + kα(α)α = M, (16)

where L and M are the aerodynamic lift and moment,
respectively. They can be calculated from the pres-
sure distribution on the surface, i.e.

L =

∫

pdA, (17)

M =

∫

pxdA, (18)

where p is the pressure distribution, x is the distance
from the point where the lift is applied.

The identified models are now applied to pre-
dict flutter for similar parameter values as the train-
ing data. We used Eq. (16) in combination with the
identified models described in the previous sections
to simulate flutter. It needs to be noted that the lift
in this model also depends on the plunge state, but
when training the SINDy models, we did not take
this into account. Due to this, we used Theodorsen’s
lift theory to model the plunge parts of the lifts.

We have also added a cubic spring to the angular
DOF to keep the vibrations inside the applicability
region of the model and the better approximate real-
ity in the process, i.e., kα(α)α = kα1α + kα3α

3. Using
the identified models in Section 3, the lift force and
the aerodynamic moment can be expressed as

L =
1
2
ρU2b

(

CL(k) +
2kH1(k)

U
ḣ +

2k2H4(k)
b

h

)

(19)
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M =
1
2
ρU2b2

(

CL(k)
4
+

2kA1(k)
U

ḣ +
2k2A4(k)

b
h

)

(20)

where H1(k),H4(k), A1(k), A4(k) are the flutter deriv-
atives of the heave motion [4], and CL(k) is the identi-
fied lift coefficient variable from the pitching motion.
Substituting (19) and (20) into (15) and (16) we get

ḧ + 2ωhξhḣ + ω2
hh =

= −
ρU2b

2m

(

CL(k) +
2kH1(k)

U
ḣ +

2k2H4(k)
b

h

)

,

(21)

α̈ + ωαξαα̇ + ω
2
αα + qα3 =

=
ρU2b2

2Iα

(

CL(k)
4
+

2kA1(k)
U

ḣ +
2k2A2(k)

b
h

)

,

(22)

where q = kα3/Iα is the stiffness coefficient of the
cubic spring, ξh = ξα = ξ is the damping factor, and
ωh, ωα are the angular natural frequencies of the h,
and α degrees of freedom. The evolution of the lift
coefficient from the pitching motion is

ĊL(k) = c1(k)α + c2(k)α̇ + c3(k)CL

+c4(k)α2 + c5(k)αα̇ + . . . ,
(23)

with the coefficients listed in Table 1. We solve
the model equations (21-23) numerically using the
Mathematica software. For the numerical solution,
we used the following initial conditions

h(0) = 0.1 m, α(0) = 0 rad, CL(0) = 0,
ḣ(0) = 0 m/s, α̇(rad/s) = 0 m.

(24)

Figure 3 illustrates the results of the ROM sim-
ulation (Eqs. (21-23)) using the parameters from
Tables 1 and 3, where ξα = ξh = ξ.

Parameter k = 0.1 k = 0.5
ωh [rad/s] 0.628 3.14
ωα [rad/s] 0.754 3.267
ξ [1] 0.1 0.1

q [1/(s2rad3)] 40 10
U [m/s] 1 3

Table 3. Parameters of the ROM

The models determined for k = 0.1 and k = 0.5
are able to reproduce flutter, as shown in Figure 3. In
the case of k = 0.2, the simulation showed that di-
vergence occurred, not flutter. From Table 1, it can
be observed that in this model, the coefficient of α̇ is
zero, while for the other two models, it is positive. So
in the future, it might be useful to use constrained op-
timization techniques to prescribe a nonzero value of
this coefficient to get more useful models. Although
only three models have been fitted, it cannot be cer-
tain that this technique will result in better models,
so more research is necessary in this direction.

(a) k = 0.1

(b) k = 0.5

Figure 3. Dynamic lift coefficient for k = 0.1, and

k = 0.5

5. CONCLUSIONS

The significant problem of creating reduced-
order models for aerodynamic loads, valid for large
amplitude, and frequency oscillations, was studied.
The SINDy method was utilized to extract the gov-
erning differential equation of the aerodynamic lift
coefficient from CFD data of a flat plate with pitching
motion. This method resulted in easily interpretable,
simple models. It was shown that the identified mod-
els for one particular frequency show excellent agree-
ment with the CFD simulation data for varying amp-
litude oscillations. The test cases showed that some
identified models could reproduce the flutter phe-
nomenon. Suggestions to improve the optimization
procedure were also given.
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