
Conference on Modelling Fluid Flow (CMFF’22)

The 18th International Conference on Fluid Flow Technologies

Budapest, Hungary, August 30-September 2, 2022

Mechanistic turbulence: Targeted energy transfer in a

multi-degree-of-freedom nonlinear oscillator

Bendegúz D. BAK1, Róbert ROCHLITZ2, Tamás KALMÁR-NAGY3, Gergely KRISTÓF4

1 Corresponding Author. Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and

Economics. Bertalan Lajos u. 4 - 6, H-1111 Budapest, Hungary. E-mail: bak.bendeguz@gpk.bme.hu
2 Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics. E-mail:

rochlitz.robert.z@gmail.com
3 Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics. E-mail:

kalmar.nagy.tamas@gpk.bme.hu
4 Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics. E-mail:

kristof.gergely@gpk.bme.hu

ABSTRACT

We study the energy transfer process in a bin-

ary tree structured mechanical oscillator that has

strongly nonlinear dissipative elements. The masses

and spring stiffnesses of the system are tuned to

closely match the eigenfrequencies of the oscillator

with the eddy frequencies deduced from the charac-

teristic eddy lengths of a turbulent flow. These eddy

lengths were obtained from actual measurements of

airflow passing through an urban street canyon model

carried out in the large wind tunnel of the Theodore

von Kármán Wind Tunnel Laboratory. We demon-

strate that the model exhibits an energy cascade and

compare its features with those of the classical turbu-

lent energy cascade for different types of excitations.

We show how the energy is distributed across the dif-

ferent scales of the system. The primary mechan-

ism behind the observed energy transfer is analyzed

for different excitation types. We compute wave-

let transforms and visualize them on the so-called

frequency-energy plot of the system to show the un-

derlying dynamics. The results demonstrate evidence

of irreversible energy transfer from the linear part to-

wards the nonlinear dissipative parts of the system

through nonlinear beats and fundamental targeted en-

ergy transfer.

Keywords: energy cascade, nonlinear dynamics,

turbulent flow

NOMENCLATURE

A [-] amplitude

E [-] total energy

K [-] level stiffness

L [m] eddy length

M [-] level mass

Q [-] quality function

a [-] parameter for setting the ini-

tial energy
c [-] damping coefficient

d [-] common ratio of geometric

series
k [-] element stiffness

m [-] element mass

n [-] number of levels

x [-] position

δ [-] Kronecker delta

κ [-] wavenumber

Ω [1/s] eddy frequency

ω [-] frequency

ρ [1/m3] density

Subscripts and Superscripts

i index of element

j index of level

¯ temporal average

ˆ spectrum with respect to wavenumber

1. INTRODUCTION

In many engineering applications, there are pro-

cesses involving energy transfer between a range of

different scales. Nowadays an important aspect of

this is targeted energy transfer (TET). Kerschen et

al. [1] showed that by attaching a nonlinear energy

sink (NES) to a linear system, a major portion of the

induced energy can be dissipated leading to irrevers-

ible targeted energy transfer from the primary sys-

tem towards the nonlinear dissipative element. The

study of the dynamics of systems involving one or

multiple NESs has generated tremendous amount of

papers. E.g., Gendelman [2] extended the existing

methods to systems with non-polynomial nonlinear-

ity, that were originally developed to analyse cubic

TET in systems with cubic nonlinearity. Viguié et
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al. [3] used passive nonlinear TET to stabilize drill

strings, reducing the torsional vibrations arising dur-

ing operation. Motato et al. [4] showed that the use

of NESs in automotive drivelines resulted in redistri-

bution of vibrational energy. In a recent paper Chen

et al. [5] demonstrated that parallel-coupled NESs

are more efficient at dissipating medium shocks than

parallel NESs and perform no worse than a single

degree of freedom NES in the whole force range ex-

amined.

Targeted energy transfer also arises in turbulent

flows. According to Richardson [6], the larger vor-

tical structures that represent the large scales of tur-

bulent flow break up into smaller ones due to their

instability, transferring their kinetic energy to smaller

and smaller scales, until viscous processes take over.

A mathematical description of the energy spectrum

of these turbulent scales was given by Kolmogorov

[7] for 3D homogenous isotropic turbulence, which

characterizes Richardson’s energy cascade. In this

description, the total energy E is given by

E =

∫

Ê(κ)dκ, (1)

where κ ∼ 1/L is the wavenumber associated to the

turbulent scale L, Ê(κ) is the energy content associ-

ated with the scales that have wavenumber κ.

In recent years there have been efforts to repro-

duce the Kolmogorov spectrum using a mechanistic

model of turbulence, consisting of linear oscillators.

Kalmár-Nagy and Bak [8] showed that for a well

chosen power law describing the stiffnesses of the

system, the Ê(κ) ∝ κ−5/3 inertial range of the spec-

trum can be qualitatively obtained from the model.

In this paper a new nonlinear variant of the

mechanistic model of Kalmár-Nagy and Bak [8, 9]

is studied. The difference between the structure of

this nonlinear model variant and the original model

is that the dissipative elements are nonlinear energy

sinks and they are not attached to a motionless wall.

After introducing the chosen parameters of the model

and the tools of the analysis in Section 2, the dynam-

ics of the system is analyzed in Section 3 for different

types of initial conditions. In Section 4 conclusions

are drawn.

2. MECHANISTIC TURBULENCE

2.1. Description of the model

In this paper, a mechanistic model of turbulence

is used, which is a n = 6 level binary tree of masses

connected by springs and dampers as shown in Fig-

ure 1. The mass in the top level is connected to a

stationary ceiling, and the masses in the bottom level

are connected to the previous level by springs with

cubic nonlinearity and linear dampers. In general, an

element i of level j is connected to the element ⌊i/2⌋

of level j−1, and the elements 2i, 2i+1 of level j+1.

The model parameters are considered to be the

same across the elements of a level, thus each level j

can be characterized with the mass m j of its elements,

Figure 1. Binary tree of spring connected masses

the stiffness k j of its springs, and with the damping c

in the case of the last level. The equations describing

the motion of the i th mass in the j th level:

m j ẍi + k jxi + k j+1(xi − x2i)+

+k j+1(xi − x2i+1) = 0, if j = 1,

m j ẍi + k j(xi − x⌊i/2⌋) + k j+1(xi − x2i)+

+k j+1(xi − x2i+1) = 0, if j ∈ {2, 3, 4},

m j ẍi + c(ẋi − ẋ2i) + c(ẋi − ẋ2i+1)+

+k j(xi − x⌊i/2⌋) + k j+1(xi − x2i)
3
+

+k j+1(xi − x2i+1) 3
= 0, if j = 5,

m j ẍi + c(ẋi − ẋ⌊i/2⌋) + k j(xi − x⌊i/2⌋)
3
= 0,

if j = 6

(2)

Throughout this work, Eq. (2) is solved using

Wolfram Mathem- atica’s built-in numerical differ-

ential equation solver (NDSolve). The desired ac-

curacy was set to 8 significant digits. The NDSolve

function automatically determines the best numerical

scheme for the problem and uses adaptive step size to

obtain the required accuracy.

An important quantity is the energy of a given

level j that is defined to be the kinetic energy of the

masses of the level, and half of the potential energy

of the springs connecting to these masses:

E j(t) =
1
2
m j

∑2 j−1
i=2 j−1 ẋi(t)+

+
(1+δ1, j)

4(1+δn, j)
k j

∑2 j−1
i=2 j−1

(

xi(t) − x⌊i/2⌋
)2
+

+
1

4(1+δn−1, j)
k j+1

∑2 j+1−1
i=2 j

(

xi(t) − x⌊i/2⌋
)2
,

for j ∈ {1, . . . , 6},

(3)

where δ is the Kronecker delta (δi, j = 1, if i = j and

δi, j = 0 otherwise). With these, the total energy of

the system is

E(t) =

6
∑

j=1

E j(t). (4)

The temporal average energy of a level for a time
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window t ∈ [t1, t2] is

Ē j =
1

t2 − t1

∫ t2

t1

E j(t)dt (5)

A temporal energy spectrum of the system can be in-

terpreted as the level energies scaled by the total en-

ergy of the system, i.e.

Ê j(κ j) = Ē j/Ē, (6)

where κ j = 1/m j is the mass wavenumber. This en-

ergy spectrum shows the contribution of each scale

m j to the total energy of the system.

2.2. Model parameters

The masses and the spring stiffnesses were set

based on eddy lengths and frequencies of a turbu-

lent flow. These were obtained from measurements

of an airflow passing through an urban street canyon

model, that was performed in the large wind tunnel

of the Theodore von Kármán Wind Tunnel Laborat-

ory. This experiment provided several eddy lengths

and frequencies, from which six were selected such

that they represent different scales, these are shown

in Table 1.

The masses of the elements were directly calcu-

lated from the eddy lengths as

m j = ρL
3
j . (7)

The choice of parameter ρ is arbitrary, but in or-

der to obtain masses with the same order of mag-

nitude as in previous works [8, 9], the value of ρ =

1000 1/m3 was chosen. Note that due to the model

parameters being dimensionless, the unit of ρ was

changed to preserve dimensional homogeneity in Eq.

(7).

The light damping was prescribed to ensure that

the system exhibits strongly nonlinear dynamics, the

damping coefficient values were set to

c = 0.001. (8)

It was found that for significantly higher or lower

damping, it is difficult to obtain targeted energy

transfer. As examining TET in the system was the

goal of the paper, c was chosen such that the oscil-

lator could exhibit this behaviour.

Table 1. Turbulent flow measurements

j Eddy length, L j [m] Eddy frequency, Ω j

[1/s]

1 0.14637 23.208

2 0.12775 53.222

3 0.08710 68.074

4 0.07789 39.060

5 0.03418 84.279

6 0.01502 170.663

The spring stiffnesses were set such that the ei-

genvalues of the purely linear variant of the model

approximately match the eddy frequencies listed in

Figure 2. Chain of spring connected masses

Table 1. In the linear model variant the nonlinear

springs are simply replaced by linear springs. In

order to obtain the correct spring stiffnesses, one

more simplification was employed to reduce compu-

tational burden: the binary tree was replaced by a

chain of M j masses connected by linear springs with

stiffness K j, where M j = 2 j−1m j and K j = 2 j−1k j.

This reduced model shown in Figure 2 made the

search for the spring stiffness parameters computa-

tionally affordable, while it also “preserved” the ei-

genvalues of the linear binary tree structured oscil-

lator. This means that every eigenvalue of the re-

duced chain oscillator is an eigenvalue of the binary

tree structured oscillator, while obviously the binary

tree structured oscillator has additional eigenvalues.

The K j stiffnesses were optimised by searching

for the minimum of the quality function

Q =

6
∑

j=1

∣

∣

∣Ω j − ℑ(λ j)
∣

∣

∣ (9)

using a simple genetic algorithm, where λ j are the

eigenvalues of the model and ℑ(.) denotes the ima-

ginary part function.

The resulting model parameters are shown in

Table 2.

Table 2. Model parameters obtained from the tur-

bulence measurements

j m j k j

1 3.13586 5303.1

2 2.08489 1391.54

3 0.660776 1190.65

4 0.472547 510.463

5 0.0399316 80.9006

6 0.00338852 98.6928

2.3. Frequency-energy plot

A very powerful tool of analysing these nonlin-

ear systems is the frequency-energy plot (FEP). As a

nonlinear system has no normal modes or eigenval-

ues, nonlinear normal modes (NNM) are defined as a

time-periodic oscillation of a non-dissipative nonlin-

ear dynamical system [10]. Thus the FEP shows the

energy dependence of the frequency corresponding

to the NNMs. This plot can be produced by assum-
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ing periodic oscillations as

xi(t) = Ai cos(ωt). (10)

By substituting this expression into Eq. (2), and solv-

ing for Ai at t = 0, the Ai(ω) amplitude-frequency

functions can be obtained. From these, the total

energy-frequency function can be determined from

Eqs. (3) to (4). This was done for both the nonlinear

binary tree model and the nonlinear reduced model

(see Figs. 1 to 2), that are compared in Figure 3.

This demonstrates that the dynamics of the reduced

model is similar indeed, but its FEP shows that the

NNMs of the reduced chain oscillator have a higher

energy content for a given frequency in general.

10-4 10-3 10-2 10-1 1 101 102 103 104

10

20

30

40

50

60

70

log E

ω

Binary tree Reduced model

Figure 3. FEPs of the binary tree structured and

the chain oscillator

3. SIMULATION RESULTS

The system was investigated with impulsive ex-

citations exclusively, meaning that no forcing was

applied. In every examined case, the system was star-

ted from equilibrium, i.e.

xi(0) = 0 ∀i ∈ {1, . . . , 63}. (11)

Three types of initial velocities were investig-

ated, the first is nonzero initial conditions in the first

five levels. In this case, the initial kinetic energy of

different levels follows a geometric sequence, it is

equal for elements in the same level, and is zero for

the bottom level:

ẋi(0) =
√

ad j

m j
, i ∈

{

2 j−1, . . . , 2 j − 1
}

,

j ∈ {1, . . . , 5},

ẋi(0) = 0, i ∈
{

2 j−1, . . . , 2 j − 1
}

, j = 6,

(12)

where the parameter a was used to set the initial total

energy of the system. The next type is nonzero initial

conditions in a single j ∈ {2, 3, 4} level of the tree,

where the initial velocities of the masses in level j

follow a geometric sequence:

ẋi(0) = ad i, i ∈
{

2 j−1, . . . , 2 j − 1
}

,

ẋi(0) = 0, i <
{

2 j−1, . . . , 2 j − 1
}

.
(13)

Finally, in the last type the first level was started

with an initial velocity of 1, and the elements of the

second level with initial velocities of ±1:

ẋ1(0) = 1,

ẋ2(0) = ±1,

ẋ3(0) = ±1.
(14)

3.1. Nonzero initial conditions in the first

five levels

The system was launched from the initial condi-

tions Eq. (12) for several E(0) initial energy levels

and d common ratios. At t = 1000, the ratio of the

total energy and the initial energy were calculated,

the contour plot of this ratio is shown in Figure 4 for

the different E(0) and d values. This shows that the

behaviour of the system is very sensitive to the initial

energy level, as well as the initial energy distribution

among the levels of the binary tree.
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Figure 4. Fraction of the remaining energy as

a function of E(0) and d, with initial conditions

given in Eq. (12). White x’s denote the points used

as initial conditions in Eq. (15)

Next the system was examined for two particu-

lar sets of initial conditions that are marked by white

crosses in Fig. 4. These were chosen such that

they are close to each other, but have a significantly

different portion of their initial energy remaining at

t = 1000. In both cases, d = 1.175, and the initial

energies are:

E(1)(0) = 1.728

E(2)(0) = 2.488
(15)

The fraction of the total energy of the system in

the two cases is shown in Figure 5, demonstrating

that even for two very similar initial conditions the

behaviour of the system is drastically different.

The fraction of the total energy stored in the

last level was calculated for the two cases, these are
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Figure 5. Fraction of the total energy as a function

of time, with d = 1.175 and initial energy levels

from Eq. (15), and initial conditions given in Eq.

(12)

shown in Figures 6 and 7. The figures show that for

both initial conditions there is a TET, but this occurs

around t = 80 for E(0) = E(1)(0), in contrast for

t = 100 for E(0) = E2(0), and the peak of the energy

transfer is also higher for the lower initial energy.
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Figure 6. Fraction of the energy stored in the

last level as a function of time, d = 1.175,

E(0) = E(1)(0), with initial conditions given in Eq.

(12)
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Figure 7. Fraction of the energy stored in the

last level as a function of time, d = 1.175,

E(0) = E(2)(0), with initial conditions given in Eq.

(12)

Figures 8 and 9 show the wavelet transform of

x32, which shows the frequency of the vibration as

the function of its energy content, superimposed onto

the FEP for the two initial conditions. In the case

of E(0) = E(1)(0), the system follows a backbone

curve of the FEP very closely, which indicates that

fundamental targeted energy transfer takes place in

this case. In case of the higher initial energy level

the system does not excite a single NNM, which in-

dicates that the main mechanism of energy transfer is

nonlinear beating that allows a more efficient dissip-

ation.

Figure 8. Wavelet transform of x32, with

d = 1.175, E(0) = E(1)(0), with initial conditions

given in Eq. (12)

Figure 9. Wavelet transform of x32, with

d = 1.175, E(0) = E(2)(0), with initial conditions

given in Eq. (12)

The temporal average of the energy of the levels

was calculated with t1 = 0, t2 = 200 (see Eq. (5))

and the energy spectra are shown in Figure 10. The

main difference between the two results is the energy

stored in the last level, which is much lower for the

higher initial energy, suggesting that the energy of

this level is more efficiently dissipated. Though these

spectra do not resemble the Kolmogorov spectrum,

their overall trend is qualitatively similar.

3.2. Nonzero initial conditions in a single

level

In this case the system was simulated with initial

velocities given in Eq. (13) for different E(0) initial

energies and d common ratios. Figures 11 to 13 show

the fraction of the remaining energy as function of d

and E(0) for levels j ∈ {2, 3, 4}. Comparing these to

Fig. 4, it can be concluded that the behaviour of the

system is more sensitive to the distribution of energy

among the levels than it is to the distribution among
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Figure 10. Energy spectrum of the system, with

d = 1.175 and initial energy levels from Eq. (15),

and initial conditions given in Eq. (12)

the masses of the same level. In these cases, the en-

ergy dissipation is much more affected by the initial

energy.
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Figure 11. Fraction of the remaining energy as

a function of E(0) and d, with initial conditions

given in Eq. (13) for level j = 2
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Figure 12. Fraction of the remaining energy as

a function of E(0) and d, with initial conditions

given in Eq. (13) for level j = 3
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Figure 13. Fraction of the remaining energy as

a function of E(0) and d, with initial conditions

given in Eq. (13) for level j = 4

3.3. Nonzero initial conditions in the first

two levels

Finally, the system was examined for the third

type of initial conditions specified by Eq. (14). De-

pending on the sign of ẋ2(0) and ẋ3(0), the system

behaves very differently. As the binary tree model is

symmetric, there are only 3 cases to be considered:

• ẋ2(0) = ẋ3(0) = 1, this will be denoted with

+ + +,

• ẋ2(0) = 1, ẋ3(0) = −1, this will be denoted with

+ + −,

• ẋ2(0) = ẋ3(0) = −1, this will be denoted with

+ − −.

Figure 14 shows the total energy of the system

over time for the three set of initial conditions. The

total energy dissipation is the highest in the case of

+ + +, and the lowest for + − −.
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E
n
e
rg
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E
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E
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)

+++

++-
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Figure 14. Fraction of the total energy as a func-

tion of time, with initial conditions given in Eq.

(14

It is clear from Figures 15 to 21 that the energy

fraction of the last level is overall the highest for

+ + +, and again it is the lowest for + − −, in which

case the peak energy fraction is lower than for the

+ + + and + + − initial conditions by a factor of 100.
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As there is only significant TET for +++, it is expec-

ted that this initial condition would cause the highest

dissipation. Indeed, as there is virtually no energy in

the last level for + − −, the behaviour of the system

is close to linear.
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Figure 15. Fraction of the energy stored in the last

level as a function of time, with initial conditions

given in Eq. (14) and + + +
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Figure 16. Fraction of the energy stored in the last

level as a function of time, with initial conditions

given in Eq. (14) and + + −
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Figure 17. Fraction of the energy stored in the last

level as a function of time, with initial conditions

given in Eq. (14) and + − −

At last, the wavelet transform of x32 is computed

for the examined cases, shown in Figures 18 to 20.

For the + + + initial condition, the system follows

one of the backbone curves, whereas in the other two

cases the system remains below the curves through-

out the simulation.

Figure 21 shows the energy spectrum of the sys-

tem in the three cases. The energy stored in the last

level was significantly lower for the + + − and + − −

Figure 18. Wavelet transform of x32 for initial con-

ditions in Eq. (14) and + + +

Figure 19. Wavelet transform of x32 for initial con-

ditions in Eq. (14) and + + −

Figure 20. Wavelet transform of x32 for initial con-

ditions in Eq. (14) and + − −

initial conditions than for the + + + initial condition.

This demonstrates that if the energy of the last level

is less, the dissipation is reduced.

4. SUMMARY

The mechanistic model of turbulence was intro-

duced as a binary tree of spring connected masses.

The parameters of this model were derived from tur-

bulence measurement data using a reduced model.

FEPs were created for the two models to demonstrate

their similar behavior. It was found that the reduced

model predicts somewhat higher energies for a given

frequency of the NNM.

The system was simulated for three types of ini-
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Figure 21. Energy spectrum of the system for ini-

tial conditions in Eq. (14)

tial conditions distinguished by the elements with

nonzero initial velocities. With nonzero initial ve-

locity in the first 5 levels, the behaviour of the sys-

tem was found to be very sensitive to both the initial

energy and the energy distribution among the levels.

It was demonstrated that even a small change in the

initial energy content can lead to drastically different

dynamical response.

With nonzero initial velocities in a single level,

the dynamics of the system were still sensitive to the

initial energy, but the energy distribution within the

level has little effect on the dissipation of the system.

A case where the only nonzero initial velocit-

ies were prescribed for the first two levels was also

examined. It was shown that for this initial energy,

the dissipation was much more substantial when the

three elements started in the same phase in contrast

to one or two elements starting in opposite phase to

the element of the first level.

The energy spectra of the investigated cases do

not resemble the Kolmogorov spectrum, but we also

did not expect this from a 6-level system. For now,

the purpose of this paper was to present numerical

experiments with different initial conditions to give

an overview about the dynamics of the system. In fu-

ture work we intend to investigate the system with

much more levels to incorporate a broad scale of

masses that will result in a more detailed energy

spectrum.
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