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ABSTRACT

Bubbly flows are important in a range of in-
dustrial and natural processes. Still, accurately
predicting the flow dynamics at industrial scales
is an immense challenge, mainly because of the
multiscale nature of processes occurring at bubble
(micro/millimetre) scales interacting with processes
at industrial scales (meters). In this work, a
multiscale numerical framework is formulated that
couples a macro- and a microscale fluid dynam-
ics solver to study such interactions. The former
solver predicts the turbulent liquid phase, and the
latter captures the bubble dynamics in response to
the turbulent fluctuations. The framework handles
arbitrary gas/liquid density ratios and uses a Mov-
ing Reference Frame method that follows fast-rising
bubbles due to high-density ratios and gravitational
forces. The framework predicts realistic bubble dy-
namics, considering the turbulent liquid fluctuations
that modify the bubble shapes and alter their motion.
Several simulation cases are performed with different
surface tensions and show bubble dynamic processes
that are even faster than the Kolmogorov times. The
numerical framework can be used with any general
DNS technique that handles two-phase flows to treat
droplets, bubbles or particles in laminar and turbulent
flows.

Keywords: Bubbles, DNS, Moving reference

frame, Multiphase flows, Multiscale method, Tur-

bulence

NOMENCLATURE

CD [−] drag force coefficient
D [m] bubble diameter
Eo [−] Eötvös number
Ga [−] Galilei number
KP [s−2] proportional coefficient

Re [−] Reynolds number
S [s−1] strain rate tensor
TD [s] derivative coefficient
TI [s] integral coefficient
U [m/s] linearised velocity field
v [m/s] bubble velocity
a [m/s2] acceleration
c [−] volume fraction field
e [m] error value
f [m/s2] random forcing
g [m/s2] gravitational acceleration
p [Pa] pressure field
t [s] time
u [m/s] velocity field
x [m] spatial coordinate
n̂ [−] interface normal
β [−] density ratio
χ [−] bubble aspect ratio
δ [−] Kronecker delta
ϵ [−] Levi-Civita symbol
η [m] Kolmogorov length scale
κ [m−1] curvature
λ [m] Taylor length scale
µ [Pa s] dynamic viscosity
ν [m2/s] kinematic viscosity
ω [s−1] vorticity
ϕ [◦] bubble orientation angle
ρ [kg/m3] density
σ [N/m] surface tension
τ [s] time scale
ε [m2/s3] dissipation rate

Subscripts and Superscripts

b bubble
e external flow
g gas
l liquid
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mrf moving reference frame
r ratio
i, j, k spatial indices
(1) linear field
∗ non-dimensional
0 initial value
∧ relative to the MRF

1. INTRODUCTION

Bubbly flows are important in various industrial
and natural processes such as chemical reactors, nuc-
lear reactors, heat exchangers and atmosphere-ocean
exchanges. This type of multiphase flow is char-
acterised by good heat and mass transfer properties
without the need for mechanical mixing and there-
fore require lower operating and maintenance costs
[1]. To understand and design such systems, it is
crucial to predict the dynamics of bubbles and how
the bubbles affect the liquid phase. However, those
dynamics are not yet fully understood, and reliable
models for the dynamics are still needed [2].

The main challenges of modelling multiphase
flows are their multiscale nature, where phenomena
occurring at the smallest scales of the order of a
bubble diameter (micro-/millimetres) affect the mac-
roscales of the order of the entire system (meters) and
vice versa [3]. Because of this large range of inter-
acting scales, even the most advanced experimental
or numerical methods cannot capture all relevant dy-
namics in industrial systems.

Currently, standard modelling methods for mul-
tiphase flows are based on a bottom-up hierarchical
strategy [4]. This strategy aims to parameterise the
relevant physical phenomena starting from the small
to the large scales of the system using different tech-
niques.

At the smallest scales, the dynamics and de-
formation of every single bubble can be resolved on
an Eulerian grid (bubble-resolved DNS) [5, 6, 7].
However, this microscopic approach requires a grid
size much smaller than the bubble diameter and in-
volves a high computational cost. Furthermore, it is
only feasible to simulate computational domains of
the order of several bubble diameters because of the
high cost. Nevertheless, using the microscopic ap-
proach, makes it possible to formulate models for
small-scale bubble phenomena such as interfacial
force coefficients, breakup and coalescence criteria,
bubble shape and deformation characteristics. In the
bottom-up modelling strategy, these models are then
used in larger-scale (macroscopic) simulation meth-
ods such as the Eulerian–Lagrangian (EL) or Eu-
lerian–Eulerian (EE) frameworks that consequently
do not resolve the smallest scales.

Although the bottom-up hierarchical modelling
strategy accounts for the effects of small-scale phe-
nomena on the larger scales, it does not consider the
multiscale coupling present in multiphase flows. For
example, small-scale dynamics such as the bubble
deformation and motion are, in reality, influenced

by, and interact with, unsteady intermittent turbulent
fluctuations in the liquid phase that originate at larger
scales.

To understand and model the influence of the
large-scale turbulent fluctuations on the small scale
bubble dynamics, there is still a need to develop nu-
merical frameworks where the bubbles are exposed
to realistic turbulent fluctuations. At the same time,
the framework must still be able to fully resolve the
bubble dynamics occurring at scales smaller than
their diameter.

In this paper, a multiscale numerical framework
is formulated that captures the small-scale bubble dy-
namics in response to an external turbulent flow. Spe-
cifically, the multiscale framework predicts the large-
scale characteristics of turbulence and impose a more
realistic flow around a bubble whose size is compar-
able to or smaller than the Kolmogorov length scale
η = (ν3/ε)1/4, where ν is the liquid kinematic viscos-
ity, and ε is the turbulent kinetic energy dissipation
rate. The microscale bubble dynamics is resolved
using a Volume of Fluid (VOF) solver with an un-
steady external flow field sampled from a Lagrangian
bubble trajectory. The Lagrangian bubble is tracked
in a macroscopic pseudospectral solver that simu-
lates homogeneous isotropic turbulence. This frame-
work is an extension of the multiscale approach by
[8] to bubbles with arbitrary density ratios between
the phases and where the turbulent signal from the
macroscale simulation is sampled following a Lag-
rangian bubble rather than a passive tracer. Addi-
tionally, the computational speed of the methodo-
logy is increased by at least two orders of magnitude
by using additional body forces proportional to the
rate of change of the turbulent external flow field.
Therefore, the approach in this work does not re-
quire any computationally expensive sub-iterations
between time steps.

To account for the relative velocity between the
phases, induced by the density difference and the
gravitational force, the reference frame is changed
in the microscopic solver to one moving with the
bubble. The moving reference frame (MRF) is non-
inertial and consequently introduces an additional
term in the Navier–Stokes equations proportional to
the bubble acceleration [9]. To follow the motion of
the bubble, the MRF acceleration is determined using
a Proportional Integral Derivative (PID)-controller
based on the bubble displacement from its initial
MRF position (P and I parts) and the bubble velocity
relative to the MRF (D part).

The PID-controlled MRF approach is a combin-
ation of the MRF methods used by [10, 11] that
updated the velocity of the MRF using the particle
volume-averaged velocity, [12] that updated the ve-
locity of the MRF based on the bubble displacement
from its initial position and the approach used by [13]
that kept the bubble in its initial position by applying
a PID-controlled artificial body force. By determin-
ing the MRF acceleration using a PID-controller, the
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MRF accelerates smoothly and potential numerical
drifts of the bubble are minimised while still allow-
ing the bubble to move freely.

The paper starts with an outline of the numer-
ical framework and then provides a few simulation
results of a rising bubble in homogeneous isotropic
turbulence to show the capabilities of the framework.

2. NUMERICAL METHODOLOGY

The multiscale framework consists of two
coupled fluid dynamics solvers. A macroscopic
Eulerian-Lagrangian solver generates a homogen-
eous isotropic turbulent flow and samples the un-
disturbed liquid velocity and gradients along a Lag-
rangian rising bubble trajectory. The sampled turbu-
lent signals are used to impose a fluctuating velocity
field in the microscopic framework. This approach
makes it possible to study the microscopic bubble
dynamics in response to the macroscopic turbulent
fluctuations. A detailed description and validation of
the multiscale framework can be found in [3].

1

EL macroscale framework

VOF microscale framework

ui

e, b(t )

∂ui

e ,b

∂ x j
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V i

(1 )( x̂ i ,t )

Figure 1. Illustration of the multiscale frame-

work. Turbulent liquid fluctuations are sampled

following a spherical Lagrangian bubble in the

macroscale simulation. Based on these signals, a

linearised unsteady flow field is imposed on the

microscale simulation. The contour levels repres-

ents the liquid vorticity magnitude.

2.1. Macroscale Eulerian-Lagrangian (EL)
solver

A pseudo-spectral solver is used to simulate
the external homogeneous isotropic turbulent liquid
flow. At low bubble volume fractions, the flow satis-
fies the incompressible Navier-Stokes equations ac-
cording to

∂ue
i

∂xe
i

= 0 , (1)

Due
i
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=
∂ue

i

∂t
+ ue

j

∂ue
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= −
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+ fi

(2)

where t and xe
i

are the time and space coordinates, ue
i

and pe are the liquid velocity and pressure, ρl is the
liquid density, and fi is a random forcing that main-
tains the turbulent velocity at a statistically steady
state. The Eqs. (1)-(2) are solved in the Fourier space
using a fast Fourier transform.

The bubble evolution is tracked in a Lagrangian
reference frame with the following forces included:
drag, buoyancy, gravity, added mass, pressure gradi-
ent and lift. The bubble motion is computed by

dxb
i

dt
=vb

i , (3)

dvb
i

dt
=β

Due
i

Dt
+

ue
i
− vb

i

τb

f (Reb) + (1 − β)gδi3+

− ϵi jk(vb
j − ue

j)ωk, (4)

where xb
i

is the position of the bubble, vb
i

is the bubble
velocity, β = 3ρl/(ρl + 2ρg) is the density ratio and
ρg is the bubble density, τb = D2/8νβ is the bubble
relaxation time and D is the diameter of the bubble,
g is the gravitational acceleration, δ is the Kronecker
delta and ϵ is the Levi-Civita symbol, ω is the liquid
vorticity at the position of the bubble. f (Reb) is the
nonlinear correction for the drag depending on the
bubble Reynolds number Reb = |ui − vb

i
|D/ν accord-

ing to [14, 15]

f (Reb) = 1 +
Reb

8 + 1
2

(

Reb + 3.315
√

Reb

) . (5)

The added mass and the lift coefficients is assumed
equal to 0.5. More numerical details regarding the
macroscale EL solver can be found in [16, 17].

2.2. Microscale Volume of Fluid (VOF)
solver

Here, a brief outline of the microscale numerical
framework is given. For more details and validation
please refer to [3].

The problem of a single bubble rising due to
buoyancy in a liquid is entirely defined by four
dimensionless parameters [6]: the Galilei number
Ga = ρl

√
gDD/µl that is the ratios of buoyancy to

viscous forces, the Eötvös number Eo = ρlgD2/σ

that is the ratios of buoyancy to surface tension
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forces, the density ratio ρr = ρl/ρg and the dynamic
viscosity ratio µr = µl/µg. The symbols l and g de-
note the liquid and the gas phases, D is the spherical
equivalent bubble diameter, σ is the surface tension,
and ρr = 1000 and µr = 100 are used that approx-
imately represents a water-air system. All variables
in the microscopic solver are made non-dimensional
using D, g, ρl and µl: x∗

i
= xi/D, u∗

i
= ui/

√
gD,

t∗ = t/
√

D/g, ρ∗ = ρ/ρl, µ
∗ = µ/µl, p∗ = p/(ρlgD),

g∗
i
= gi/g and κ∗ = κD.

To keep the bubble position fixed in the computa-
tional domain, a change of reference frame is made:

x̂∗i = x∗i − x∗mrf,i , (6)

û∗i = u∗i − u∗mrf,i , (7)

t̂∗ = t∗ (8)

where x̂∗
i

is the non-dimensional position relative to
the MRF and û∗

i
is the fluid velocity relative to the

MRF, x∗
mrf,i

and u∗
mrf,i

represents the absolute (lab) po-
sition and velocity of the MRF itself. For brevity, the
asterisks are omitted in the remainder of this paper.

The motion of the MRF should follow that of
the bubble to keep the bubble at its initial position
relative to the MRF. Since the bubble motion is un-
known a-priori a PID-controller is used that continu-
ously update the acceleration of the MRF based on
the error value ei(t) = x̂b

i
(t) − x̂

0,b
i

, that represent the
distance between the bubble centre of mass and the
initial bubble position in the MRF, and the velocity of

the bubble relative to the MRF
dei

dt
. The acceleration

and velocity of the MRF are determined as

amrf,i(t) = KP,i

(

ei +
1

TI,i

∫ t

0

ei(t
′)dt′ + TD,i

dei

dt

)

,

(9)

umrf,i(t) = u0
mrf,i +

∫ t

0

amrf,i(t
′)dt′ , (10)

where u0
mrf,i

is the initial velocity of the MRF and

KP,i, TI,i and TD,i are the ith component of the propor-
tional, integral and derivative coefficients, respect-
ively. Using the heuristic and systematic Ziegler-
Nichols tuning method [18, 19], the obtained para-
meters are (KP,i = 330, TI,i = 0.2 and TD,i = 0.13)
that produce stable regulations and minor bubble dis-
placements ei(t) for all our simulations.

An unsteady velocity field is imposed, in the
microscopic solver, that is obtained by sampling
the external undisturbed turbulent liquid velocity
and gradient tensor at the Lagrangian bubble posi-
tion xb

i
(t) in the macroscopic solver. Assuming the

bubble to be smaller than or comparable with the
Kolmogorov length scale, the liquid velocity field
surrounding the bubble can be approximated as lin-
ear [20]. With a first-order Taylor’s expansion, this
flow field is defined as:

U
(1)
i

(x̂i, t) = u
e,b
i

(t) +
∂u

e,b
i

∂x̂ j

(t)(x̂ j − x̂b
j ) , (11)

where u
e,b
i

(t) is the absolute velocity and
∂u

e,b
i

∂x̂i

(t) is

the gradients of the undisturbed liquid velocity field
at xb

i
(t) extracted from the macroscale simulations.

x̂b
j

is the position of the bubble in the MRF.

The linearised field U
(1)
i

(x̂i, t) is imposed on
the microscopic solver by continuously updating the

boundary conditions ûBC,i(x̂ j, t) = U
(1)
i

(x̂ j, t)−umrf,i(t)
and by correspondingly accelerate the microscopic
flow field according to

a
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(x̂i, t) =
d

dt
(ue,b
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) +

d
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∂u
e,b
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(x̂ j − x̂b
j ) . (12)

The Volume of Fluid (VOF) numerical approach
is used to solve the microscopic two-phase flow prob-
lem [21]. The governing equations in the MRF are
the non-dimensional incompressible Navier-Stokes
equations and the advection of the volume fraction
field c:

∂ûi

∂x̂i

= 0 , (13)

ρ

(

∂ûi

∂t̂
+ û j

∂ûi

∂x̂ j

)

= ρ
(

gi − amrf,i + a
(1)
U,i

)

+

− ∂p

∂x̂i

+
1

Ga

∂

∂x̂ j

(

µ

(

∂ûi

∂x̂ j

+
∂û j

∂x̂i

))

+
κ̂δSn̂i

Eo
,

(14)

∂c

∂t̂
+
∂cûi

∂x̂i

= 0 , (15)

where δS is the Dirac distribution function, κ and ni

are the interface curvature and the normal vector. The
extra acceleration terms in Eq. 14 represents the ac-
celeration due to the motion of the MRF and the un-
steady external velocity field given by the macroscale
framework. The VOF method is a one-fluid formula-
tion where the fluid density ρ and viscosity µ varies
according to

ρ(c) = cρl + (1 − c)ρg , (16)

µ(c) =

(

c

µl

+
1 − c

µg

)−1

, (17)

where a harmonic mean is used to for the viscosity
since that is generally more accurate for gas-liquid
interfaces with a continuous shear stress [22]. The
governing equations are solved with the open-source
code Basilisk on a tree-structured Cartesian grid with
an efficient adaptive grid refinement technique [23,
24].

2.3. Case setup

The multiscale framework is used to simulate
a rising bubble in a turbulent liquid flow. With
the macroscale pseudo-spectral solver, homogeneous
isotropic turbulence is simulated at the Taylor Reyn-
olds number Reλ = urmsλ/ν = 180. Here, urms is
the root mean square of the velocity fluctuations and
λ =
√
ε/15νurms is the Taylor length scale. The com-

putational domain is cubical with the side length 2π3
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and a spatial resolution of 2563 grid points. Periodic
boundary conditions are used in all three directions.
With water as the liquid and assuming a turbulent
dissipation rate of 1.5 10−5 m2/s3, the Kolmogorov
length scale becomes 0.5 mm, the spherical bubble
diameter is 0.76 mm and the time scale is 0.26 s. In
non-dimensional form, the Kolmogorov length scale
is 0.015 and the Kolmogorov time becomes 0.35.

In the microscopic framework the parameter
Ga = 65 is used that corresponds to the 0.76 mm

air bubble in water. To study the effects of different
bubble deformations the cases Eo = (10, 30, 50, 120)
are simulated that corresponds to the air bubble but
with a reduced surface tension. A cubic computa-
tional domain of (10D)3 is specified where the bubble
is kept in the centre by the PID-controlled MRF tech-
nique and an unsteady external velocity field is im-
posed based on the signal from the macroscopic sim-
ulation according to Eq. 11. The adaptive grid re-
finement technique in Basilisk is used to obtain suf-
ficient grid refinement in regions containing the in-
terface and with relatively high values of the second
gradient of the velocity field. The maximum grid res-
olution corresponds to more than 50 cells/D.

3. SIMULATION RESULTS

A snapshot from the microscopic simulation
case with Ga = 65 and Eo = 50 is shown in Fig-
ure 2. Here, the bubble is kept in the centre of the
computational domain by the PID-controlled MRF
technique and the external fluctuating liquid velocity
field predicted by the macroscopic solver is imposed
as described in Section 2.2. The contours repres-
ent the velocity magnitude relative to the MRF made
non-dimensional by the characteristic velocity scale√

gD. Throughout the simulation, the orientation
angle ϕ is computed, defined as the angle between
the bubble minor axis a and the vertical y-axis, and
the bubble aspect ratio χ = b/a defined as the ratio of
the major, b, to minor bubble axes. ϕ and χ are com-
puted using the approach by [25] where χ is defined
as the ratio of the larger to the smaller eigenvalues,
χ ≈ (Imax/Imin)1/2, of the second moment of inertia
tensor

Ii j =
1

mb

∫

Ωb

(x̂i − x̂b
i )(x̂ j − x̂b

j )ρgdV̂ , (18)

where Ωb is the bubble volume.

Figure 3 shows how the χ, ϕ and instantaneous
bubble drag force coefficient CD vary in the micro-
scopic simulations. All simulations are stopped at
t/τη = 4 and the same unsteady external velocity
field signal is imposed on all cases.

The top panel shows the modulus of the imposed

velocity field strain rate tensor |S e
i j
| =

√

S e
i j

S e
i j

, (S e
i j

is the symmetric part of the imposed velocity gradi-
ent ∂ue,b

i
/∂x̂ j obtained at the bubble position in the

macroscopic simulation). This quantity gives a rep-
resentation of a typical turbulent signal for the gradi-
ents with large localised peaks. The second panel of

Fig. 3 shows how the bubble aspect ratio χ vary in
response to the imposed fluctuating velocity field and
due to unsteady small-scale bubble dynamics such as
shape and trajectory oscillations. The case Eo = 10
corresponds to the case with the highest relative sur-
face tension force and results in a χ ∈ [3.0, 3.2]
during the simulation. This case show a correlation
between the imposed strain rate |S e

i j
| and χ with a

Pearson’s correlation coefficient of 0.5 in the interval
t/τη = [0.5, 4]. The cases Eo = 30 and Eo = 50
are, however, not well correlated with |S e

i j
| and show

fluctuations of χ that are characterised by time scales
smaller than the Kolmogorov time scale. At Eo = 30,
χ is overall larger than for Eo = 10 and fluctuate
roughly between [3, 4]. However, at Eo = 50, χ de-
creases and fluctuates around [2, 3]. That χ is the
lowest for the highest Eo-number can be explained
by the definition of χ and the change of character-
istic bubble shapes with reduced surface tension il-
lustrated in Figure 4. Here, the bubble shape for
Eo = 50 is close to a spherical cap that have a
lower aspect ratio than the oblate spheroid shape at
Eo = 10. At Eo = 120, the surface tension is too low
to keep the bubble intact and a peripheral breakup oc-
cur. Because of the breakup, no quantitative data are
presented for the Eo = 120 case.

The third panel of Fig. 3 shows the orientation
angle ϕ and clearly indicate that the different Eo-
numbers result in different oscillating behaviors. The
fastest oscillations, in the case Eo = 30, are around
an order of magnitude faster than the Kolmogorov
time scale τη and are more related to the capillary

time scale [26] τσ =
√

ρlD3/σ ≈ 0.2τη indicating
that bubble shape oscillations significantly influence
the bubble motion for this case.

The bottom panel of Fig. 3 shows the instantan-
eous bubble drag force coefficient that fluctuates at
around CD ≈ 2 for the case Eo = 10 but increase to
CD ≈ 3 for the Eo = 30 and Eo = 50 cases. This
50% drag coefficient increase is related to the change
of bubble shapes at different Eo-numbers. Fig. 4
shows the characteristic shapes of the bubbles during
the simulations. At Eo = 10, the bubble is approx-
imately an oblate spheroid with a lower CD than the
cases Eo = 30 and Eo = 50 that are closer to a spher-
ical cap shape.

That CD oscillate in the case Eo = 30 can be
explained by the aforementioned bubble shape oscil-
lations and the bubble trajectory in the absolute, or
lab, reference frame shown in Figure 5. Although
the bubble shape and trajectory at Eo = 30 is similar
to Eo = 50, the former case has the oscillating shape
and a spiralling trajectory (seen as oscillations of the
trajectory in Fig. 5) that cause the instantaneous CD

to vary. Since the time-averaged CD is similar for
both Eo = 30 and Eo = 50, the overall trajectories
for both cases become similar. In the case Eo = 10,
the CD is lower and therefore this bubble travels fur-
ther in the y-direction.

By performing a time lagged cross correlation
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between the |S e
i j
|(t) and CD(t) a peak Pearson’s cor-

relation coefficient is obtained when CD lags about
t/τη ≈ 0.2, or, in the capillary time scale t/τσ = O(1),
for all cases (the CD(t) signal is shifted back t/τη ≈
0.2). At this time lag, the correlation coefficient is
about 0.3 for Eo = 10, 0.2 for Eo = 30 and 0.15 for
Eo = 50. These values indicate the CD is correlated
with the imposed fluctuating strain rates but with a
response time of t/τσ = O(1) implying that capillary
effects are governing the response dynamics.

Figure 2. Snapshot of the velocity magnitude re-

lative to the MRF, normalised with the charac-

teristic velocity scale
√

gD, in the simulation case

Ga = 65, Eo = 50. The angle between the bubble

minor axis a and the vertical y-axis is defined as

the orientation angle ϕ. The ratio of the major b

and minor a semi-axes is the bubble aspect ratio

χ = b/a.

4. CONCLUSIONS

In this paper, a multiscale numerical frame-
work is formulated that handles bubbles or droplets
with diameters comparable to, or smaller than, the
Kolmogorov length scale and with arbitrary density
ratios to the carrier phase. A PID-controlled moving
reference frame technique is used to follow the mo-
tion of bubbles or droplets with high relative velo-
cities to the carrier phase due to gravitational forces.
The fluctuating external velocity field is efficiently
imposed on the bubble microscale solver by adding
body forces proportional to the time derivatives of
the linearised external velocity field. This imposition
method improves the efficiency of the algorithm by
at least two orders of magnitudes compared with the
framework suggested by [8].

The multiscale numerical framework resolves
the effects of both large-scale turbulent fluctuations
and small-scale phenomena such as bubble induced
flow disturbances and capillary effects. The sim-
ulations capture bubble dynamics that are at least
an order of magnitude faster than the Kolmogorov
time scale. In particular, the results show signific-

1

2

3

|S
e ij|τ

η

2

3

4

χ

Eo=10 Eo=30 Eo=50

0

10ϕ

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t/τη

2

3

C
D

Figure 3. Evolution of the modulus of the external

velocity field strain rate (top panel), the bubble as-

pect ratio (second panel), the bubble orientation

angle (third panel) and the instantaneous bubble

drag force coefficient (bottom panel). The modu-

lus of the strain rate is the same for all simulation

cases while the evolution of the other bubble prop-

erties (in the three bottom panels) change with the

Eo number. The legend above the second panel

applies to all three bottom panels.

ant changes in the small-scale bubble dynamics by
varying the surface tension. The relative import-
ance of the surface tension also influence how several
bubble properties correlate with the imposed external
strain rate. These results illustrate the ability of the
proposed multiscale framework to resolve and study
both the bubble deformations induced by turbulent
fluctuations and the small-scale bubble dynamics as-
sociated with capillary effects.

The numerical framework is presented in a gen-
eral way so that it can be used with any DNS tech-
nique for two-phase flows (VOF, level-set, lattice-
Boltzmann, diffuse interface approach). In future
works, the multiscale framework can be further im-
proved by running the two solvers in parallel. Then,
the turbulent fluctuations from the macroscale sim-
ulation can be computed along the bubble traject-
ory given by the microscale simulation. This ex-
tension would provide a complete two-way coup-
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(a) Eo = 10 (b) Eo = 30

(c) Eo = 50 (d) Eo = 120

Figure 4. Characteristic bubble shapes in cases

where a bubble rise in homogeneous isotropic tur-

bulence. The same simulation setup and turbu-

lent field is used in all cases but an increasing Eo

number is specified that reduce the relative im-

portance of the surface tension force. At increas-

ing Eo-number, the bubble is more deformed and,

at Eo = 120, a peripheral breakup occurs.
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Figure 5. Bubble trajectories in an absolute, or

lab, reference frame predicted by the microscale

simulation in the x/y-plane (left panel) and the

z/y-plane (right panel). The same turbulent fluc-

tuations are imposed on all simulations but the

different Eo-numbers results in different small-

scale bubble dynamics that influence the traject-

ory.

ling between the small-scale bubble dynamics and
the large-scale turbulent field.
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