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ABSTRACT

The paper presents the results of numerical sim-

ulations of a two-dimensional homogenous isotropic

turbulent flow carried out using the direct numerical

simulation (DNS) and large eddy simulation (LES)

methods. In the latter case, the classical Smagorinsky

model and the Approximate Deconvolution Method

(ADM) are used to model the sub-grid terms. In

ADM the unfiltered variables are obtained from the

iterative van Cittert method and are used to directly

calculate the sub-grid tensor. The vorticity-stream

function formulation of the Navier-Stokes equation is

used in this work. We focus on the accuracy and de-

pendence of ADM on the type of the filter (explicit,

compact), its order, number of the iterations during

the deconvolution procedure and the order of deriv-

ative discretization. Comparisons with DNS data are

performed taking into account the basic quantities,

e.g. the total energy, variance, and also higher or-

der statistical moments (skewness and kurtosis). We

found that when a high-order discretization method

is used the ADM with compact difference type filter-

ing schemes is more accurate than using the classical

finite difference type filters.
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1. INTRODUCTION

Two-dimensional (2D) turbulence is not an ideal

model of real turbulent flow. It does not occur in

nature or in laboratory, but it finds applications in

analysis of geophysical flows, such as oceanic and

atmospheric phenomena, as well as in astronomy and

plasma physics [1, 2, 3]. It is also important for un-

derstanding fully developed three-dimensional (3D)

turbulence, although the behavior of its energy cas-

cade is different than in real 3D flows [4, 5, 6]. In the

latter case, the energy is transferred from large scales

to smaller ones by the vortex stretching mechanism

that does not exist in a 2D turbulent flow. In this case,

according to the Kraichnan-Batchelor-Leith (KBL)

theory, a reverse energy transfer takes place.

Direct numerical simulation (DNS) of such a

complex phenomenon as turbulence requires a large

amount of computing resources and is usually very

time consuming. A common approach is to use

large eddy simulations (LES), in which only large-

scale vortices are directly calculated, while the ef-

fect of small sub-grid scales is modeled. The LES

equations are formally defined with the low-pass

filter operator that separates these scales. So far,

various approaches to modeling the interactions of

scales and the closure of the LES system have been

presented [7]. A relatively novel one is the Ap-

proximate Deconvolution Model (ADM) introduced

by Stolz and Adams [8]. The ADM uses the re-

peated filtering to approximate the unfiltered flow

variables and then applies them to the unknown sub-

grid terms to close the LES system. Initially, ADM

was successfully applied in 3D turbulent flow mod-

eling [9, 10, 11, 12]. Then it was used to model

2D turbulence in large-scale ocean circulation prob-

lems [13, 14] as well as to small-scale atmospheric

boundary layer [15, 16, 17]. Recently, Boguslawski

et al. [18] applied ADM based on the Wiener decon-

volution method for 2D homogenous isotropic turbu-

lence. San et al. [19] performed a detailed sensitivity

analysis of the low-pass spatial filters for ADM-LES

of homogeneous incompressible 3D flows using 2nd

order finite difference discretization scheme. They

considered various types of filters such as box fil-

ters, compact difference filters (CDF), known also as

Padé-type filters, differential and hyper-differential

filters. San and Staples [20] also tested various high-

order numerical schemes such as explicit and com-

pact finite differences, Arakawa scheme, dispersion-

relation-preserving scheme, and the Fourier-Galerkin

pseudospectral scheme for DNS of homogeneous
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isotropic 2D decaying turbulent flows. In the present

work, we continue this research applying different

filters and discretization methods and perform com-

parisons not only for basic quantities (e.g. a total

energy, variance) but also for higher-order statistical

moments, i.e. skewness and kurtosis.

2. GOVERNING EQUATIONS

The dimensionless vorticity-stream function for-

mulation of the Navier-Stokes equations for 2D in-

compressible flows can be written as follows:

∂ω
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where ω is the vorticity, ψ is the stream function,

u =
∂ψ

∂y
, v = −

∂ψ

∂x
are the velocity components and Re

is the Reynolds number.

Denoting by G the filter kernel in physical space,

the filtering of a general variable f is determined

by the convolution operation f̄ = G ∗ f , where∫ ∞

−∞
G(ξ) dξ = 1. Thus, applying the filtration op-

eration to the equations (1) and (2) gives:
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∂ω̄

∂x
+ v̄

∂ω̄

∂y
=

1

Re

(

∂2ω̄

∂x2
+
∂2ω̄

∂y2

)

+ τSGS (3)

∂2ψ̄

∂x2
+
∂2ψ̄

∂y2
= −ω̄ (4)

where ū =
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is the sub-grid term which cannot be directly

computed because the unfiltered variables u, v, and

ω are unknown. The standard closure for this sub-

grid term is usually based on the sub-grid viscosity,

whereas in the ADM approach it is computed using

the approximate unfiltered quantities.

3. APPROXIMATE DECONVOLUTION

MODEL

In this paper, the ADM is based on the so-

called iterative van Cittert deconvolution method

[21], which applied for a general variable f̄ can be

written as:

f ∗ =

NADM∑

n=0

(I −G)n

︸         ︷︷         ︸

G−1
a

f̄ (6)

where I is the identity operator and G−1
a is the approx-

imate inverse filter. With the deconvolution model,

the unclosed sub-grid term can be closed as follows:

τSGS = −
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+
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where u∗, v∗, and ω∗ are the reconstructed variables.

In practical LES, the exact form of the filter func-

tion G is unknown. It is a combination of an implicit

filter combined with mesh spacing and the filters in-

duced by the numerical discretization of the first and

second derivatives (GI) [22]. In this paper, we do not

attempt to precisely define the effective filter Ge such

that Ge = GIG. Moreover, the filter used in the ADM

may be completely different from the LES filter. In

this paper, however, we only consider the ideal situ-

ation when these two filters are equal and we focus

on the effect of discretization on the simulation res-

ults. We consider two types of LES filters which are

based on the explicit and compact filtering methods.

3.1. Explicit and compact filters

For simplicity, we consider a 1D periodic do-

main [0, L] consisting of K uniformly distributed

nodes xi = h(i − 1), for i = 1, . . . ,K, with the mesh

spacing h = L/K. The formulas derived for the 1D

domain can be directly applied to 2D and 3D cases

along separate lines in each direction.

The general formula for the explicit finite differ-

ence filtering (FDF) schemes can be written as:

f̄i =
1

2

Nc∑

j=0

bc
j

(

fi+ j + fi− j

)

(8)

and for the implicit compact filters (CDF) as:
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Mc∑

k=1

ac
k

(

f̄i+k + f̄i−k
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2
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(9)

where f̄i are the filtered values at nodes xi, fi are the

known discrete function values. The filters coeffi-

cients ac
k

and bc
j
can be calculated from the following

system of Nc + 1 equations for FDF schemes:
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and from Mc + Nc equations for CDF schemes:
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for i = 1, ...,Nc − 1

T (π) = 0

(dlT (ω)/dωl)(π) = 0 for l = 2k, k = 1, ...,Mc − 1

(11)
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where

T (ω) = Ĝ(Mc,Nc)(ω) =

Nc∑

j=0

bc
j
cos( jω)

1 + 2
Mc∑

k=1

ac
k

cos(kω)

, (12)

is the filter kernel associated with CDF schemes (9)

in Fourier space, known as the transfer function, and

ω = 2πn/K, for 0 ≤ n ≤ K/2, is the so-called scaled

wavenumber in the range [0, π]. In the case of FDF

schemes that can be considered as CDF with Mc = 0,

the formula (12) is reduced to the nominator. The

highest possible order of filtration for the assumed

stencils of Eqs. (8) and (9) is equal to (2Nc) and

2(Mc + Nc − 1), respectively. This is achieved when

all the coefficients ac
k

and bc
j

are explicitly determ-

ined from the expansions of f and f̄ into the Taylor

series and additional constraints for the transfer func-

tion. Figure 1. shows the transfer functions of some

FDF and CDF schemes used in this work. Here, we

only compare the results using second order filtering

schemes with Mc = 0,Nc = 1, denoted as G(0,1) and

with Mc = 1,Nc = 1, denoted by G(1,1).

Figure 1. Transfer functions of G

4. NUMERICAL METHODS

The objective of this work is to test and evaluate

the ADM model for 2D incompressible flow using

explicit and compact high-order discretization meth-

ods and compare the results using the pseudospectral

method. In this section, we briefly discuss the spatial

discretization and temporal integration methods we

use.

4.1. Spatial discretization methods

The general formula for the approximation of the

first and second order derivatives using explicit finite

difference (FD) and compact difference (CD) discret-

Table 1. Spatial discretization schemes and cor-

responding them approximation orders.

FD scheme CD scheme

2nd order M = 0,N = 1 -

4th order M = 0,N = 2 M = 1,N = 1

6th order M = 0,N = 3 M = 1,N = 2

8th order M = 0,N = 4 M = 1,N = 3

10th order M = 0,N = 5 M = 1,N = 4

12th order - M = 2,N = 4

20th order - M = 4,N = 6

ization schemes can be written as follows:

f ′i +

M∑

k=1

ak

(

f ′i−k + f ′i+k

)

=
1

h

N∑

j=1

b j

(

fi+ j − fi− j

)

(13)

f ′′i +

M∑

k=1

ak

(

f ′′i−k + f ′′i+k

)

=
1

h2

N∑

j=1

b j

(

fi+ j − 2 fi + fi− j

)

(14)

where FD schemes are obtained for M = 0. The

highest possible order of approximation for given

stencils M and N on the left and right-hand side of

Eqs. (13) and (14) is equal to 2M + 2N. This is ob-

tained when all coefficients ak and b j are determined

directly from the Taylor series expansions. The coef-

ficients ak and b j can be derived from the following

systems of M + N equations:





1 + 2
M∑

k=1

ak = 2
N∑

j=1

jrb j

M∑

k=1

(
r∏

l=1

(2i + l)

)

k2iak =
N∑

j=1

j2i+rb j

(15)

where the second equation is for i = 1, ...,N +M − 1.

The case with r = 1 corresponds to the first order de-

rivative approximation and r = 2 to the second order.

Table 1 shows the discretization schemes we use in

this work, along with their corresponding orders.

4.2. Temporal integration method

As we mainly concentrate on the accuracy of

the spatial discretization methods and ADM, we use

a fourth-order Runge-Kutta (RK) time integration

scheme with a small time step ∆t = 5.0 × 10−4. Tak-

ing into account Eq. (3) written as:

dω

dt
= D(u, v, ω) (16)

where D(u, v, ω) is a discrete operator of spatial

derivatives, the fourth-order RK scheme can be is
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defined as:

ω(1) = D (un, vn, ωn)

ω(2) = D
(

un + ∆t
2

u(1), vn + ∆t
2

v(1), ωn + ∆t
2
ω(1)

)

ω(3) = D
(

un + ∆t
2

u(2), vn + ∆t
2

v(2), ωn + ∆t
2
ω(2)

)

ω(4) = D
(

un + ∆tu(3), vn + ∆tv(3), ωn + ∆tω(3)
)

ωn+1 = ω(n) + ∆t
6

(

ω(1) + 2ω(2) + 2ω(3) + ω(4)
)

(17)

where for k = 1, 2, 3 the velocity components

u(k), v(k) are obtained from Eq. (4).

5. RESULTS

We consider a 2D periodic domain with the di-

mensions Lx × Ly = 2π × 2π. The flow field is ini-

tialized as a homogeneous isotropic turbulence (HIT)

in accordance with the method suggested by San et

al. [20], with the Taylor and Kolmogorov length

scales equal to lt = 0.022Lx and η = 0.00236Lx,

respectively. In two-dimensional turbulence, the in-

ertial range in the energy spectrum is proportional to

k−3, where k = |k| =
√

k2
x + k2

y is a wavenumber in

Fourier space. The initial energy spectrum is given

by the formula

E(k) =
as

2

1

kp

(

k

kp

)2s+1

exp



−

(

s +
1

2

) (

k

kp

)2


 (18)

in which the maximum value of initial energy spec-

trum is obtained for kp, as =
(2s+1)s+1

2s s!
, and s is a shape

parameter. As in [20], we take kp = 12 and s = 3.

The initial vorticity distribution is defined as

|ω̃(k)|

√

k

π
E(k)eiζ(k) (19)

where ζ(k) = ξ(k) + η(k) is the phase function, and

ξ(k), η(k) ∈ [0, 2π] are independent random values.

The results obtained using the ADM model

described above are compared with the classical

Smagorinsky model and filtered DNS data. In the

Smagorinsky model, the sub-grid term is defined as

τSGS = νt

(

∂2ω

∂x2
+
∂2ω

∂y2

)

(20)

where νt = (Cs∆)2

√

S̄ i jS̄ i j is the non-dimmensional

turbulent viscosity, Cs is the Smagorinsky constant,

∆ is the filter width and S i j is the strain rate tensor.

The simulations were carried out for the Reyn-

olds number Re = 1000. The exemplary DNS results

were obtained on the mesh with 10252 nodes and the

results of the classical LES or applying ADM were

obtained on the mesh consisting of 2572 nodes. The

total simulation time was t = 10 seconds.

The initial vorticity field and its evolution over

time in the HIT configuration in the case of DNS

is shown in Figure 2. At the time moment t = 0,

large scale vortices do not exist. It can be seen

that initially only small-scale turbulent structures are

present. Over the time they form larger vortical struc-

tures and decay under the influence of the viscous

forces.

Figure 2. Vorticity contours in HIT configuration

at various time moments.

In DNS and LES with the Smagorinsky model

the 6th order CD scheme was used with M = 1 and

N = 2 in Eqs. (13) and (14). The computations

performed with ADM were performed with various

FD, CD schemes and also pseudospectral discretiz-

ation method. The results obtained using the ADM

are compared with the results of DNS and also with

those achieved without any model on the mesh con-

sisting of 2562 nodes .

Figure 3 shows the comparison of the en-

ergy spectrum for filtered values of DNS, classical

Smagorinsky model and ADM with NADM = 2 using

2nd order FDF and CDF schemes and various dis-

cretization methods at time t = 5 seconds. It can be

seen that in all cases the total energy of the flow pre-

dicted by both LES and ADM agrees relatively well

with the filtered DNS solution.

However, there are significant differences for the

higher central moments, such as variance, skewness

and kurtosis, as shown in Figures 4 to 6. In these

cases, the ADM provides much more accurate results

compared to the classical LES. From the Figs. 4 to

6 we can also see that the ADM with CDF schemes

is much more accurate than with FDF schemes.

Moreover, the results obtained without the sub-

grid model using the pseudospectral method diverges

from DNS data. This is because the mesh 2562 does

not ensure a sufficient resolution and, as the pseudo-

spectral method is not dissipative, it turns out to be

unstable. It can be seen that the ADM stabilizes it

correctly. Figure 7 shows the comparison of the vor-

ticity fields at the time moment t = 10 for ADM with

2nd order FDF and CDF schemes and for ’No model’

using the pseudospectral method with DNS vorticity

field. It is worth noting that only the ADM with the
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Figure 3. Energy spectra at time t = 5

pseudospectral CDF scheme almost perfectly agrees

with DNS. As shown in [23], the higher the order of

the CD discretization scheme, the results are closer

to the spectral solutions.

Figure 4. Variance of the u variable

6. SUMMARY

In this paper, we applied the Approximate De-

convolution Model (ADM) for numerical modeling

a two-dimensional homogeneous isotropic turbulent

flow. We analysed the effect of ADM accuracy and

its dependence on the type of filter (explicit, com-

pact) and its order. We also performed an analysis
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Figure 5. Skewness of the u variable

of ADM’s dependence on various spatial discretiz-

ation methods, such as explicit finite difference and

compact difference schemes, as well as the Fourier

pseudospectral method.

The results obtained using the ADM model were

compared with the classical Smagorinsky model and

the DNS data. It has been observed that the use of a

Figure 6. Kurtosis of the u variable

higher order compact discretization scheme with the

ADM model leads to nearly spectral accuracy. It was

found that in such cases the ADM based on the com-

pact filters is more accurate than using the classical

finite difference type filters.
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Figure 7. Vorticity contours in HIT configuration

obtained in the simulations using DNS (upper left

figure), ‘no-model’ approach (upper right), ADM

with 2nd order FDF (lower left) and CDF (lower

right).
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