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ABSTRACT

We present a novel wall model for well resolved

large-eddy simulation (LES) of complex flows. The

model is based on a Taylor series expansion of the

velocity and pressure profiles in wall-normal direc-

tion. The derivatives are determined from the near-

wall asymptotics of the Navier-Stokes equations. We

take a cubic polynomial for the velocity profile and

a linear function for the pressure profile and impose

a collocation constraint at a fluid point normal to the

wall. This results in an evolution equation for the

wall shear stress.

The accuracy of the wall model is assessed with

both an a-priori and an a-posteriori approach for the

oscillatory Stokes boundary layer and a Falkner-Skan

boundary layer. Finally, we apply the model for a

LES of turbulent channel flow.

Keywords: boundary layer equations, large eddy

simulation, direct numerical simulation, wall

model

NOMENCLATURE

U [m/s] velocity outside the boundary

layer
∆x,∆y,∆z [m] cell size

a, ã [1/s] velocity gradient

f [−] stream function

h [m] channel half-height

p [Pa] pressure

u,w [m/s] wall-parallel velocity com-

ponents
uτ [−] friction velocity

v [m/s] wall-normal velocity compon-

ent
x, z [m] wall-parallel coordinates

y [m] wall-normal coordinate

∆x+,∆y+,∆z+ [−] cell size in wall units

n [−] wall-normal unit vector

u [m/s] velocity vector

I [−] identity matrix

β [−] Falkner-Skan parameter

δs [m] Stokes boundary layer thick-

ness
√

2ν/Ω
η [−] dimensionless wall-normal

coordinate
ηs [−] dimensionless wall-normal

coordinate
µ [Pa · s] dynamic viscosity

ν [m2/s] kinematic viscosity

Ω [1/s] frequency

ρ [kg/m3] density

τ
w

[Pa] wall shear stress vector

Subscripts and Superscripts

+ in wall units, i.e. normalised with ν and uτ
0 amplitude of an oscillation

p at an interpolation point close to the wall

w at the wall (y = 0)

1. INTRODUCTION

In the simulation of turbulent flow, there exist

three principal simulation paradigms. The Reynolds-

averaged Navier-Stokes (RANS) equations supple-

mented with a suitable turbulence model for the

Reynolds stresses can be used to approximately com-

pute the time-average velocity field and higher order

statistics like the turbulent kinetic energy. The large-

eddy simulation (LES) approach explicitly resolves

the large, energetic turbulent scales of motion on the

numerical grid and only models the stresses arising

from the unresolved motion (sub-grid scale or SGS

stresses). While the LES comes at a higher compu-

tational expense, it is generally considered more reli-

able for complex flow configurations. The direct nu-

merical simulation resolves all turbulent length and

time scales and does not require a turbulent or SGS

model. Its accuracy and reliability comes with very

large computational costs which inhibits its applica-

tion at high Reynolds numbers.

In wall-bounded turbulent flow and in flow

around bluff bodies, a high grid resolution is ne-

cessary in all three simulation paradigms to resolve

thin laminar boundary layers or the viscous sublayer

of turbulent boundary layers. The wall shear stress
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is determined by this viscosity-dominated near wall

flow and its accurate prediction is necessary to obtain

quantitatively correct results or, e.g. when smooth

flow separations are present, even a qualitatively cor-

rect flow topology.

In LES, two approaches have been developed to

address this problem: wall modeled LES and wall-

resolved LES. In wall modeled LES, the wall shear

stress is either computed via an assumed velocity

profile ("wall function") or by solving a dedicated

differential equation on the wall. The former ap-

proach commonly relies on the logarithmic velocity

profile of turbulent boundary layers or extensions

thereof [1]. In the latter approach, some authors

solve Reynolds-averaged Navier-Stokes (RANS)

equations with a turbulence model on a zonally em-

bedded refined grid near the wall [2, 3]. The velo-

city boundary conditions for the RANS equations are

supplied by the LES and in turn the wall shear stress

for the LES results from the RANS solution. In a

similar spirit, a wide variety of hybrid RANS/LES

models have been developed in which the length-

scale of the RANS turbulence model is chosen de-

pending on the grid. The resulting modeled stresses

are a mixture between Reynolds stresses and SGS

stresses. An example for this is the so-called De-

tached Eddy Simulation [4]. In wall-resolved LES,

the wall shear stress is computed by applying a fi-

nite difference approximation. Therefore, high res-

olutions of approximately one wall unit are required

near the wall. The advantage of this approach is that

the modeling error is limited to the sub-grid scale

model. An intermediate approach between the two

paradigms can be realised by blending the wall func-

tion with a linear approximation of the velocity pro-

file. For example, the Werner-Wengle wall function

[5] uses a linear approximation of the velocity profile

if the wall-nearest grid point is below 12 wall units

and a 1
7
-th power law at larger wall distances. Based

on the grid resolution near the wall, this model res-

ults in a wall modeled or a wall-resolved LES. Breuer

et al. [6] have extended this model by incorporating

pressure gradient effects.

In complex flow configurations where laminar

boundary layers, transition to turbulence or flow sep-

aration and reattachment may occur, wall functions

and RANS-based models have a large uncertainty as

the underlying model assumptions – e.g. the pres-

ence of a turbulent equilibrium boundary layer – do

not always hold in the flow [7, 8]. On the other

hand, wall-resolved LES of high-Reynolds number

flow can have a prohibitive computational cost, e.g.

[9].

In this contribution, we present a wall model

for LES that is derived directly from the Navier-

Stokes equations under the boundary layer assump-

tions. The aim of this model is to provide an accur-

ate approximation to the wall shear stress using only

information that is available in the wall-nearest cell.

In a high-fidelity wall-resolved LES, this allows to

choose a coarser grid resolution near the wall while

maintaining the predictive quality in complex flow

configurations.

2. DERIVATION OF THE WALL MODEL

In this section, we demonstrate how our wall

model can be derived. In the first step, the velocity

and pressure gradient profiles are approximated by a

Taylor series in the wall-normal coordinate.

In the second step (see Sec. 2.1), we determine

relations among the expansion coefficients by insert-

ing the expansions into the incompressible Navier-

Stokes equations with no-slip conditions. For two-

dimensional flow, Dallmann and Gebing [10] have

derived such relations from the Taylor series of

the streamfunction. Moreover, they recognised that

within the region of convergence of the Taylor series

of the streamfunction, the velocity field is completely

determined by the wall shear stress, the wall pressure

and the initial conditions. Consequently, all deriv-

atives occurring in the expansion can be expressed

in terms of the wall shear stress and the wall pres-

sure. Also based on the work of [10], Shrikhande

[11] investigated the possibility of reconstructing the

velocity field from wall shear stress and wall pres-

sure data. They demonstrated their method for vari-

ous canonical flows and simulations of idealised air-

craft wake vortices. They found that the Taylor series

converges fast close to the wall and slowly far from

the wall. In the present work, we consider the inverse

problem – reconstructing the wall shear stress from a

known velocity and pressure gradient. We also apply

the above derivation to the boundary layer equations

to obtain a simplified form of the wall model (see

Sec. 2.2).

In the third step (see Sec. 2.3), we truncate

the polynomial expansions and impose a collocation

condition at a fluid point off the wall. This results

in a system of partial differential equations for the

wall shear stress with a source term which is a func-

tion of quantities at the collocation point. Finally, we

discuss the properties of the wall model and possible

generalisations (see Sec. 2.4).

2.1. Compatibility conditions from the

Navier-Stokes equations

First, the velocity profile is expanded into a

Taylor series in the wall distance y:

u = uw+
∂u

∂y

∣

∣

∣

∣

∣

w

y+
∂2u

∂y2

∣

∣

∣

∣

∣

∣

w

y2

2
+
∂3u

∂y3

∣

∣

∣

∣

∣

∣

w

y3

6
+O(y4) (1)

From the definition of the wall shear stress, the first

derivative can be identified as

∂u

∂y

∣

∣

∣

∣

∣

w

=
τwx

µ
(2a)

Inserting the Taylor expansion into the momentum

equation and grouping by powers of y, we obtain the

following expressions for the higher wall-normal de-

Copyright© Department of Fluid Mechanics, Budapest University of Technology and Economics and the Authors



rivatives of the velocity profile at the wall:

∂2u

∂y2

∣

∣

∣

∣

∣

∣

w

=
1

µ

∂p

∂x

∣

∣

∣

∣

∣

w

(3a)

∂3u

∂y3

∣

∣

∣

∣

∣

∣

w

=
1

ρν2
∂τwx

∂t
−

1

µ

(

2
∂2τwx

∂x2
+
∂2τwx

∂z2
+
∂2τwz

∂x ∂z

)

(3b)

The former relation is the trace of the wall-parallel

momentum equation and represents the well known

compatibility condition at the wall [12], whereas the

latter relation (3b) is the trace of the y-derivative of

the wall-parallel momentum equation and has been

obtained by Dallmann and Gebing [10] in its two-

dimensional form using the streamfunction.

As the pressure gradient at the wall is generally

unknown, it must be extrapolated from the field. A

Taylor expansion of the pressure in wall-normal dir-

ection gives

∂p

∂x
=
∂p

∂x

∣

∣

∣

∣

∣

w

+

(

∂2τwx

∂x2
+
∂2τwz

∂x ∂z

)

y + O(y2) (4)

where the wall-normal momentum and the continu-

ity equation were used. As the pressure gradient is

multiplied with y2 in the Taylor expansion of the ve-

locity, the overall approximation error of the velocity

remains of order O(y4).

Please note that similar expressions can be ob-

tained for the w-component by interchanging x and

z, u and w, and τwx and τwz. These have been omitted

for the sake of brevity.

2.2. Compatibility conditions from the

boundary layer equations

For high Reynolds number flow, we can apply

the simplifications of boundary layer theory. We

can neglect the wall-parallel derivatives in the vis-

cous term as well as the wall-normal variation of the

pressure. Based on these assumptions, we obtain the

modified relations

∂3u

∂y3

∣

∣

∣

∣

∣

∣

w

=
1

ρν2
∂τwx

∂t
(5)

for the third derivative of the velocity and

∂p

∂x
=
∂p

∂x

∣

∣

∣

∣

∣

w

(6)

for the pressure gradient.

2.3. Closure of the wall model

In order to close the equation, we neglect the

O(y4) terms in equation (1) and impose a collocation

condition at position yp: u(yp) = up. We obtain a

differential equation for the wall shear stress:

∂τwx

∂t
= −6ν

y2
p

τwx +
6ρν2

y3
p

(up − uw) − 3ν

yp

∂p

∂x

∣

∣

∣

∣

∣

p

(7)

As a consequence of the boundary layer assump-

tions, the equation is local and does not contain wall-

parallel derivatives of the wall shear stress. This sim-

plifies the implementation of the model considerably.

Instead of a collocation condition, a cell average

value could be imposed to close the wall model [6].

Depending on the properties of the numerical scheme

of the flow solver, this approach could be advantage-

ous.

2.4. Discussion

The cubic wall model (7) forms part of a hier-

archy of Taylor polynomial approximations starting

with the linear and quadratic approximations

τwx =
µ

yp

(up − uw) (8)

τwx =
µ

yp

(up − uw) −
yp

2

∂p

∂x

∣

∣

∣

∣

∣

p

(9)

with the latter suggested by [13]. Equation (9) is in-

cluded in (7) as the steady state solution. Models

of higher order can be derived by determining more

terms in the Taylor expansions of velocity and pres-

sure. These models feature a quadratic nonlinearity

of the wall shear stress and an elliptic equation along

the wall that determines the curvature of the pressure

profile.

We see the main application of our model in

the simulation of complex wall bounded flows for

which the assumption of a classical turbulent bound-

ary layer does not hold. An example for this is the

flow around a wall-mounted cylinder where the wall

shear stress follows a laminar boundary layer scal-

ing [8]. However, since the wall model is based on a

cubic polynomial, we expect that the model derived

from the Navier-Stokes equations could be also ap-

plied as a wall boundary condition for high-order fi-

nite difference and finite volume codes.

In the computation of turbulent flow, an advant-

age of the proposed methodology is that the wall

model is formulated in terms of the instantaneous

wall shear stress. Consequently, the deficiency of the

wall function approach that the instantaneous velo-

city profile is assumed to be of the same form as the

mean velocity profile, is avoided. As the cubic wall

model is derived solely from the pressure and viscous

terms, the interpolation point yp is constrained to lie

in the viscous sublayer. This could be alleviated by

using a higher order polynomial and by including a

sub-grid scale model (e.g. the WALE model [14])

into the derivation of the compatibility conditions.

Using a variation of constants formula, it can be

shown that the cubic contribution of the wall model

results in a smoothing of the quadratic model (9):

τwx =

∫ t

0

6ν

y2
p

e
− 6ν(t−t′ )

y2
p

(

µ

yp

(up − uw) −
yp

2

∂p

∂x

∣

∣

∣

∣

∣

p

)

dt′

+ τwx|t=0 e
− 6νt

y2
p (10)

Consequently, the wall model has an exponentially

decaying memory. The wall shear stress follows ve-

locity and pressure fluctuations with a frequency be-

low 6ν/y2
p, whereas higher frequencies are damped.
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3. ANALYTICAL VALIDATION

In this section, we assess the accuracy of the wall

model (7) when the exact velocity and pressure fields

are assumed to be known. The difference between

the modeled and the exact wall shear stress is expan-

ded into a Taylor series in terms of the distance of

the interpolation point yp. For comparison, we also

assess the accuracy of using linear and quadratic wall

functions.

3.1. Stokes boundary layer

As a first test case, we choose the oscillatory

Stokes boundary layer. It is an analytical solution

of the Navier-Stokes equations in a semi-infinite do-

main bounded by a wall oscillating harmonically in

its tangent plane. We consider the flow in the co-

ordinate frame moving with the wall which leads to

the appearance of an oscillatory pressure gradient

∇p = −ρU0 sin(Ωt) e
x
. After the transient has de-

cayed, the solution results as

u(t, y) = U0

[

e−ηs cos (Ωt − ηs) − cos (Ωt)
]

(11)

with the normalised coordinate ηs = y/δs and the

boundary layer thickness δs =
√

2ν/Ω [12]. The wall

shear stress can be obtained as

τwx = µ

√

Ω

ν
U0 sin

(

Ωt −
π

4

)

(12)

and it advances the outer flow by a quarter of a

period.

We evaluate the linear, quadratic and cubic

model for the velocity field (11) and perform a Taylor

series expansion in yp. For the linear model (8), we

obtain

τwx,lin − τwx = −
ρΩU0

2
sin(Ωt) yp + O(y2

p) , (13)

for the quadratic model (9), we obtain

τwx,quad − τwx = −
ρΩU0

6

√

Ω

ν
sin

(

Ωt +
π

4

)

y2
p

+ O(y3
p) ,

(14)

and for the cubic model (7), we obtain

τwx,cub − τwx = −
ρΩ2U0

24 ν
cos(Ωt) y3

p + O(y4
p) . (15)

The a-priori value of the wall shear stress from the

cubic wall model is therefore third-order accurate in

the wall distance of the interpolation point yp.

3.2. Falkner-Skan boundary layer

The Falkner-Skan boundary layer [12] is a self-

similar solution to the laminar boundary layer equa-

tions for flow around a wedge. The solution is char-

acterised by the parameter β; the interior angle of

the wedge is given as βπ. For β = 0 and β = 1,

the Falkner-Skan solution corresponds to the Blasius

boundary layer and the plane stagnation point flow,

respectively.

The solution to the Falkner-Skan boundary layer

is given as

u(x, y) = U(x) f ′(η) (16)

with the similarity variable

η = y

√

1

2 − β
U(x)

νx
. (17)

The dimensionless stream function f (η) satisfies the

differential equation

f ′′′ + f f ′′ + β(1 − f ′2) = 0 (18)

with f (0) = 0, f ′(0) = 0 and f ′(∞) = 1. The exact

wall shear stress is given as

τwx = µU(x)

√

1

(2 − β)
U(x)

νx
f ′′w (19)

where f ′′w = f ′′(0) is solely a function of β.

We evaluate the linear and quadratic wall func-

tion as well as the steady state of the wall model (7)

and perform a Taylor expansion. For the linear wall

function, the error results as

τwx,lin − τwx = −
β

2 − β
ρU(x)2

2x
yp + O(y2

p) (20)

which is first-order accurate in the distance of the in-

terpolation point yp. For the quadratic wall function

as well as for the cubic wall model, we obtain

τwx,quad − τwx = τwx,cub − τwx

=
2β − 1

(2 − β)2
f ′′w

2 ρU(x)3

24νx2
yp

3 + O(y4
p) .

(21)

The a-priori value of the wall shear stress of the cubic

wall model is again third-order accurate in yp. As the

flow is steady, the time derivative of the wall shear

stress is zero and the predictions of the quadratic and

cubic model are the same.

4. NUMERICAL VALIDATION

In this section, we investigate the accuracy of the

wall model (7) when the velocity field is unknown

and the evaluation of the wall model is coupled to the

direct numerical simulation or large-eddy simulation

of the velocity and pressure fields. This approach

permits to assess feedback effects between the wall

model and the flow solution. We compare the pre-

dictive performance of the linear approximation (8)

and our model (7) depending on the grid resolution.

4.1. Description of the flow solver

The simulations were performed using our in-

house code MGLET [15]. It uses a second-order

central finite volume scheme on a block-structured

Cartesian grid with a staggered arrangement of vari-

ables [16]. The time integration employs a third-

order low-storage explicit Runge-Kutta scheme [17]

and the divergence-free constraint of the velocity

field is enforced in every substep by solving a Pois-

son equation for a correction pressure [18].

Flow in complex geometries is treated using
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a cut-cell immersed boundary method based on

[19, 20]. This discretisation preserves the skew-

symmetry of the convective term and the positive-

definiteness of the diffusive term. The time step re-

striction due to the small cells that occur invariably

as a complex geometry intersects a Cartesian grid is

circumvented with a merging strategy.

4.2. Implementation details

In the following, we comment on some note-

worthy aspects of the coupling of the wall model into

our flow solver. The wall shear stress appears expli-

citly as a momentum flux in the finite volume balance

of the cut-cells. For each cut-cell, the velocity vector

and pressure gradient are interpolated to a point at a

wall-normal distance of yp = ∆y and the wall-normal

component is removed from both vectors [21]. Then,

either the linear wall function (8) or our wall model is

used to compute the wall shear stress vector from the

tangential velocity and pressure gradient. Please note

that the linear wall function is the default second-

order approximation of the diffusive term [21]. We

use a vectorial form of the wall model (7) derived

from the boundary layer equations:

∂τ
w

∂t
= − 6ν

y2
p

τ
w
+

6ρν2

y3
p

[

I − n ⊗ n

]

(u
p
− u

w
)

−
3ν

yp

[

I − n ⊗ n

]

∇p
∣

∣

∣

p

(22)

We integrate this equation using the same explicit

Runge-Kutta scheme as for the momentum equation.

The coupling is implemented by simply updating the

values at the beginning of each stage of the Runge-

Kutta scheme.

For the present choice of the wall distance yp of

the interpolation point the stability of the time integ-

ration scheme is not affected. In particular, the crit-

ical ratio 6ν∆t/y2
p = 6ν∆t/∆x2 that can be obtained

from the decay constant of the wall model is equal to

the diffusion number of a cubic open fluid cell.

4.3. Stokes boundary layer

We simulated the oscillatory Stokes boundary

layer flow (11) on a domain [0, 31 δs]. A no-slip

boundary condition is applied at the bottom and a

slip boundary condition is applied at the top. We use

a cell size of 0.05 δs, 0.1 δs, . . . , 3.2 δs. The flow was

started from rest and the calculation was performed

until Ωt = 50. Due to the slow decay of the transient

and our explicit time integration scheme, it was not

economical to simulate the flow until a steady oscil-

lation was reached. Instead, we compare the solution

to the analytical solution of [22] for the transient flow

in response to a sinusoidal pressure gradient.

Fig. 1 shows the convergence of the velocity field

u(y, t) to the analytical solution in the L2 norm com-

puted over space and time. The velocity is interpol-

ated linearly between the grid points. We observe a

second order convergence of the solution for both the

linear wall function (as expected) and the cubic wall

Figure 1. Convergence of the velocity field u(y, t)

for the transient Stokes boundary layer in the

space-time L2-norm.

model. The error for the cubic wall model (22) is ap-

proximately a third to half of the error for the linear

wall function. Notably, the cubic wall model main-

tains an advantage over the linear wall function also

for very coarse grids. For the same error, the wall

model allows to coarsen the grid by a factor of 2.

4.4. Plane stagnation point flow

In this section, we investigate the accuracy of

the wall model for the plane stagnation point flow

(a Falkner-Skan boundary layer with β = 1) which is

an exact semi-analytic solution of the Navier-Stokes

equations [12]. This flow has the property that the

boundary layer thickness is constant in space. This

allows us to choose a constant grid resolution of the

boundary layer. Furthermore, the plane stagnation

point flow is prototypical for stagnation points that

appear in flow around bluff bodies. As the bound-

ary layer is often thinnest at the stagnation point, the

resolution of this flow can dictate the overall grid res-

olution requirements.

The flow was simulated in a rectangular domain

of height 12
√
ν/a and width 36

√
ν/a. At the top

of the domain, we applied a constant inflow velocity

v = −ay with a Neumann boundary condition for the

velocity u. At the left (x = 0), we apply a symmetry

boundary condition. At the bottom (y = 0), we apply

the wall shear stress from the wall function or wall

model. At the right, we assign a constant pressure

p = 0 (this is inconsistent with the analytical solu-

tion). We varied the cell size in powers of 2 from

∆y/δ99 = 0.0161 to 0.514. At the coarsest grid res-

olution, the boundary layer is therefore contained in

only two cells.

The corresponding analytical solution is derived

from the potential flow with u = ãx and v = −ãy and
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Figure 2. Convergence of the velocity profiles u(y)

and v(y) at x =
√
ν/ã for the plane stagnation

point flow in the L2-norm computed over the y-

direction.

has the form

u(x, y) = ãx f ′(η) (23a)

v(x, y) = −
√

ãν f (η) (23b)

where the dimensionless stream function f (η) is a

solution to the Falkner-Skan equation (18) for β = 1.

Due to the displacement effect of the boundary layer,

the constant ã must be chosen differently from the

value a in the simulation. We set a value ã = 1.0556 a

that is derived from the requirement that the analyt-

ical solution matches the inflow profile of the simu-

lation. In particular, the constant ã is a solution to

√

ã/a f
(

12
√

ã/a
)

= 12 (24)

Fig. 2 shows the convergence of the velocity pro-

files at x =
√
ν/ã in the L2-norm computed over the

y-coordinate. It is apparent that the wall model signi-

ficantly improves the prediction of the velocity field.

In particular, at the coarsest grid resolution the cubic

wall model is approximately as accurate as the linear

wall function with a grid refined by a factor of 4.

4.5. Turbulent channel flow

In order to verify the correctness and robustness

of the wall model (22) and to establish resolution

requirements in turbulent flow, we performed LES

of turbulent flow in a plane channel at a Reynolds

number Reτ =
uτ h

ν
= 180 with the friction velocity

uτ =
√

τw/ρ and the half-height h. As reference

data we use the direct numerical simulation (DNS)

of [23]. The length of the domain is chosen like in

[24] as 4π h in streamwise (x) and 2π h in spanwise

(z) direction and the y-coordinate goes from −h to h.

The flow is driven by a constant pressure gradient.

The sub-grid stresses are modelled with the WALE-

viscosity model of Nicoud and Ducros [14].

We consider three grid resolutions for which

the viscous sublayer is marginally resolved. At the

coarsest resolution, the grid has a uniform cell size

of ∆x+ =
uτ ∆x

ν
= 24 wall units in the streamwise,

∆y+ = 6 wall units in the wall-normal and ∆z+ = 12

wall units in the spanwise directions. At the interme-

diate resolution, the grid has a cell size of ∆x+ = 18,

∆y+ = 4.5 and ∆z+ = 9 wall units and at the finest

resolution, the cell sizes are ∆x+ = 12, ∆y+ = 3 and

∆z+ = 6 wall units. Consequently, the interpolation

point that is used to compute the wall shear stress

lies at a distance of y+p = 6, y+p = 4.5 and y+p = 3

wall units, respectively. Flow statistics were collec-

ted over approximately 50 flow-through times and

further averaged over the x- and z-direction.

Figure 3. Mean velocity profile inside the turbu-

lent channel flow for Reτ = 180. The symbols

represent the velocity profiles obtained from our

LES, the black line represents the DNS by Hoyas

and Jiménez [23]. The grey line displays the linear

law of the wall u+ = y+.

Fig. 3 shows the profile of the mean streamwise

velocity u normalised with wall units (i.e. ν and uτ)

over the wall distance. We can see that the simulation

results with the wall model show a significant im-

provement over the results computed with the linear

law of the wall. For example, the results of the wall

model at ∆y+ = 4.5 (red triangles) are approximately

identical to the results obtained with the linear wall

function at ∆y+ = 3 (blue squares). Furthermore, the

results from the wall model at y+p lie very close to the

DNS reference. Please note that the wall shear stress

is computed by interpolating the velocity to yp – in

the present grid configuration that means taking the

average value between the two velocities closest to

the wall – and then imposing either the linear wall

function (indicated by the dotted line) or feeding the

value into the wall model. Therefore, the velocity

closest to the wall overshoots the linear law of the

wall at the coarse grid resolution.

Fig. 4 shows the profile of the Reynolds shear

stress −u′v′ normalised with wall units (i.e. ν and
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Figure 4. Reynolds shear stress profile inside the

turbulent channel flow for Reτ = 180. The sym-

bols represent the velocity profiles obtained from

our LES, the black line represents the DNS by

Hoyas and Jiménez [23].

uτ) over the wall distance. Again, the wall model

exhibits a marked improvement over the linear law

of the wall particularly in the buffer layer.

It follows from the near-wall behaviour of the ve-

locity that at leading order in the wall distance h − y

the Reynolds shear stress only depends on the wall

shear stress fluctuation field (cf. Smits et al. [25]):

−u′v′ ≈ 1

2µ2
τ′wx

(

∂τ′wx

∂x
+
∂τ′wz

∂z

)

(h − y)3 (25)

Therefore, the improved prediction of the Reynolds

shear stress near the wall directly reflects a better pre-

diction of the wall shear stress fluctuations.

The improvement in the mean velocity profile

is mainly attributed to the inclusion of the pressure

gradient which at this relatively low Reynolds num-

ber dominates the near wall part of the buffer layer.

The more accurate Reynolds shear stress further im-

proves the prediction.

For higher Reynolds numbers, the contribution

of the pressure gradient to the mean velocity profile

decreases with 1/Reτ [26]. In light of the findings of

Smits et al. [25], we expect that including the time

derivative of the wall shear stress into the wall model

remains important also for high Reynolds numbers.

5. CONCLUSION

A wall model was derived based on a cubic

Taylor polynomial for the velocity profile and a lin-

ear profile for the pressure. The wall-normal velocity

derivatives were expressed in terms of the wall shear

stress and the wall pressure using relations obtained

from the Navier-Stokes [10] or boundary layer equa-

tions. By imposing a collocation constraint for the

velocity at a point off the wall, we obtained an ordin-

ary differential equation for the wall shear stress.

We first conducted an a-priori investigation in

which the wall shear stress was computed from a

known velocity profile. For the oscillatory Stokes

boundary layer and the Falkner-Skan boundary layer,

we found that our wall model converges to the exact

wall shear at third order in the distance of the inter-

polation point. We observed that for small distances

from the wall, the model has a superior accuracy than

a linear approximation when a pressure gradient is

present and a superior accuracy than both a linear and

a quadratic approximation [13] when the flow is un-

steady.

In a second step, we performed a-posteriori tests

for which the wall model was coupled to a flow

solver. For the same test cases, we observed that the

wall model achieves the same accuracy as the lin-

ear wall function for half the grid resolution. Use of

the wall model resulted in reasonably accurate solu-

tions when there are two or more cells over the 99%

boundary layer thickness. Finally, we performed

wall-resolved LES of a turbulent channel flow at

Reτ = 180 at various grid resolutions for which the

interpolation point lies within the viscous sublayer.

We found that the wall model achieves the same ac-

curacy as the linear wall function for two thirds of

the grid resolution.

In conclusion, the present wall model can deliver

significant gains in accuracy at the same grid resolu-

tion (or significant savings in grid points at the same

accuracy) for LES that marginally resolve boundary

layers or the viscous sublayer in turbulent flow.

Future work might combine the present model

with the model of Breuer et al. [6] by replacing

their quadratic approximation of the velocity profile

within the viscous sublayer with the cubic approx-

imation derived in sections 2.1–2.3. It could also be

interesting to investigate other velocity profiles than

the Taylor polynomials. As already noted by [11],

the monomial basis could be replaced by a different

function basis with a higher approximation power,

e.g. rational functions.
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