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ABSTRACT

The proposed communication deals with hy-

brid RANS-LES modeling. The target application

is the study of flows around rotating machines like

helicopters and drones. In fine, the simulations

should provide accurate estimates concerning the

noise emission. Each of these flows can involve mean

and high Reynolds turbulent regions with detached

eddies and with thin laminar and turbulent boundary

layers. A hybrid model, like DDES, is then man-

datory, with possibly an improved resolution of LES

regions, which are mainly turbulent wakes. It is then

interesting to apply there a more sophisticated LES

model than the LES part of DDES. In our study, we

use there the Dynamic variational multiscale model

(DVMS). In the other regions, a DDES or simply

a RANS modeling is applied. In both cases a two-

equation closure is chosen. After a discussion of

the modeling ingredients, we shall present a com-

parison of the RANS, LES, and hybrid models for

two series of flows. Although computed by many re-

searchers, flows around cylinders remain difficult to

predict. The comparison will continue with a flow

around a cross shaped mixing device rotating inside

a cylinder.

Keywords: hybrid turbulence models, variational

multiscale model for LES, chimera method, cylin-

der flow, rotating machine, unstructured grids

NOMENCLATURE

W [−] flow variables

ρ [kg/m3] density

u [m/s] velocity vector

E [J/m3] total energy per unit volume

k [m2/s2] turbulence kinetic enery

ε [m2/s3] dissipation rate of k

W
h

[−] discrete flow variables

W ′
h

[−] small resolved scales of W
h

〈 〉 [−] Reynolds average

F [−] convective and diffusive fluxes

τRANS [−] RANS closure term

τLES [−] LES closure term

τDDES [−] DDES closure term

ν [m2/s] kinematic viscosity of the fluid

νt [m2/s] turbulent kinematic viscosity

Cd [−] mean drag coefficient

C′
l

[−] r.m.s. of the lift coefficient

Cpb
[−] mean base pressure coefficient

θ [deg.] mean separation angle

∆ [m] LES filter width

lRANS [m] RANS turbulence length scale

µSGS [kg/m/s] LES eddy viscosity

µRANS [kg/m/s] RANS eddy viscosity

1. INTRODUCTION

In this paper, hybrid models are evaluated for

the simulation of massively separated flows around

fixed and moving geometries, with the objective of

applying them to aeroacoustic problems involving

complex industrial flows at high Reynolds numbers.

For this purpose, the turbulence models need to be-

have preferentially like large eddy simulation mod-

els (LES) in order to introduce little dissipation and

thus better capture the small scales and the fluctu-

ations of the unsteady flows considered. However,

these flows involve very thin boundary layers, which

current computers and softwares cannot compute in

LES mode, only in RANS mode. To accommodate

both needs, LES and RANS, the hybrid turbulence

approach, combining LES and RANS in a somewhat

zonal manner, is considered by many research teams.
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In this work, beside the classical Delayed De-

tached Eddy Simulation model (DDES, [1]), we

study an approach which combines zonally this

last model and the dynamic variationnal multiscale

model (DVMS, [2]). In this hybrid DDES/DVMS

approach [3], the DVMS model is preferentially ac-

tivated in the wake regions where this latter model

introduces less dissipation than the LES component

of DDES. A hybrid RANS/DVMS model [4], where

the RANS component is Goldberg’s k − ε model [5],

is also applied in this study. A smooth blending

function, which is based on the value of a blending

parameter, is employed in these hybrid strategies, for

switching from RANS to DVMS or DDES to DVMS.

In [4], these models are applied to flows around a

cylinder at moderate Reynolds number, starting from

Reynolds number 20000.

In many industrial cases, and particularly cases with

rotating geometries like propellers, the Reynolds

number is much higher.

In the present paper, these hybrid models are ap-

plied to the flow around a circular cylinder in the

supercritical regime, namely at Reynolds numbers 1

million and 2 million. At Reynolds number 1 mil-

lion, the supercritical regime shows turbulent flow

separation on both the upper and lower surface of

the cylinder with a laminar-turbulent transition in the

boundary layers located between the stagnation point

and the separation one. At Reynolds number 2 mil-

lion, the high transition regime shows a fully turbu-

lent boundary layer on one side of the cylinder, and a

partially laminar, partially turbulent boundary layer

on the other side. This benchmark, which contains

many characteristics encountered in industrial flows,

is challenging due to the complex physics of the flow

and the considered high Reynolds numbers, and re-

mains a difficult calculation to perform. The second

application concerns the flow at Reynolds number

1.8 million around a cross shaped mixing device ro-

tating inside a cylinder.

This work is part of a cooperation program with

Keldysh Institute of Applied Mathematics of Mo-

scow focussing on the “Efficient simulation of noise

of rotating machines”, see e.g. [6, 7, 8].

The remainder of this paper is organized as

follows. Section 2 presents the hybrid turbulence

models used in this work. Section 3 describes the

numerical scheme. In Section 4, applications are

presented. The obtained results are analyzed and

compared with those obtained in other numerical

studies and with experimental data. Finally, con-

cluding remarks are drawn in Section 4.

2. TURBULENCE MODELING

2.1. RANS

First, we want to specify that RANS stands for

unsteady RANS throughout the document.

In this work, and as far as the closure of the

RANS equations is concerned, we use the low Reyn-

olds k− εmodel proposed in Goldberg et al.[5]. This

model was designed to improve the predictions of the

standard k−ε one for adverse pressure gradient flows,

including separated flows. For the sake of brevity, the

equations of this model are not recalled in this docu-

ment.

2.2. LES-like model: DVMS

In this section, we present the DVMS model

which is preferred to the classical LES approach in

our hybrid strategies because of some specific prop-

erties, as will be specified hereafter, that allow this

model to have a better behavior in some regions of

the flow, such as shear layers and wakes.

The Variational Multiscale (VMS) model for the

large eddy simulation of turbulent flows has been in-

troduced in [9] in combination with spectral meth-

ods. In [2], an extension to unstructured finite

volumes is defined. This method is adapted in the

present work. Let us explain this VMS approach in

a simplified context. Assume the mesh is made of

two embedded meshes. On the fine mesh we have

a P1-continuous finite-element approximation space

Vh with the usual basis functions Φi vanishing on all

vertices but vertex i. Let V2h represents its embed-

ded coarse subspace. Let V ′
h

be the complementary

space: Vh = V2h ⊕ V ′
h
. The space of small scales

V ′
h

is spanned by only the fine basis functions Φ′
i

re-

lated to vertices which are not vertices of V2h. Let us

denote the compressible Navier-Stokes equations by:
∂W

∂t
+ ∇ · F(W) = 0 where W = (ρ, ρu, E).

The VMS discretization writes for Wh =
∑

W
i
Φi:

(

∂W
h

∂t
,Φi

)

+
(

∇ · F(W
h
),Φi

)

= −
(

τLES (W
h
′),Φi

′
)

(1)

For a test function related to a vertex of V2h, the RHS
vanishes, which limits the action of the LES term to

small scales. In practice, embedding two unstruc-

tured meshes Vh and V2h is a constraint that we want

to avoid. The coarse level is then built from the ag-

glomeration of vertices/cells as sketched in Fig. 1.

It remains to define the model term τLES (W ′
h
). This

Figure 1. Building the VMS coarse level

term represents the subgrid-scale (SGS) stress term,

acting only on small scales W ′
h
, and computed from

the small scale component of the flow field by apply-

ing either a Smagorinsky [10] or a WALE SGS model

[11], the constants of these models being evaluated

by the Germano-Lilly dynamic procedure [12, 13].

The resulting model is denoted DVMS in this paper.

It has been checked [14] that combining VMS and

dynamic procedure effectively brings improved pre-

dictions.
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A key property of the VMS formulation is that

the modeling of the dissipative effects of the unre-

solved structures is only applied on the small re-

solved scales, as sketched in Fig. 2. This property

is not satisfied by LES models which damp also the

other resolved scales. Important consequences are

that a VMS model introduces less dissipation than its

LES counterpart (based on the same SGS model) and

that the backscatter transfer of energy from smallest

scales to large scales is not damped by the model.

These VMS models then generally allow a better be-

havior near walls, in shear layers and in the presence

of large coherent structures.

Moreover, in this work, the dynamic procedure,

which provides a tuning of the SGS dissipation in

space and time, is combined with the VMS ap-

proach, which limits its effects to the smallest re-

solved scales, so that the resulting DVMS model en-

joys synergistic effects.

Figure 2. VMS principle.

2.3. DDES model

The DDES approach used in this work is based

on the Goldberg’s k−εmodel [5]. In other words, this

RANS model is introduced in the DDES formulation

[1] by replacing the DRANS
k

= ρε dissipation term

in the k equation by DDDES
k

= ρ k3/2

lDDES
where

lDDES =
k3/2

ε
− fd max(0,

k3/2

ε
−CDDES∆)

with fd = 1 − tanh((8rd)3)

and rd =
νt + ν

max(
√

ui, jui, j , 10−10)K2d2
w

.

K denotes the von Karman constant (K = 0.41), dw

the wall-normal distance, ui, j the x j-derivative of the

ith-component of the velocity u, and the model con-

stant CDDES is set to the standard value 0.65.

2.4. Hybrid RANS/DVMS

The central idea of the hybrid RANS/DVMS

model [3] applied in this study is to combine the

mean flow field obtained by the RANS component

with the application of the DVMS model wherever

the grid resolution is adequate. In this hybrid model,

the k − ε model of Goldberg (subsection 2.1) is used

as the RANS component. First, let us write the semi-

discretization of the RANS equations :
(

∂〈W
h
〉

∂t
,Φi

)

+
(

∇ · F(〈W
h
〉),Φi

)

= −
(

τRANS(〈W
h
〉),Φi

)

.

A natural hybridation writes:

(

∂W
h

∂t
,Φi

)

+
(

∇ · F(W
h
),Φi

)

=

−θ
(

τRANS(〈W
h
〉),Φi

)

− (1 − θ)
(

τLES(W ′
h
),Φ′i

)

where W
h

denotes now the hybrid variables and θ is

the blending function which varies between 0 and 1

and is defined by:

θ = 1 − fd(1 − tanh(ξ2))

with ξ =
∆

lRANS

or ξ =
µSGS

µRANS

,

the shielding function fd being defined as in Subsec-

tion 2.3.

The blending function θ allows for a progressive

switch from RANS to LES (DVMS in our case)

where the grid resolution becomes fine enough to re-

solve a significant part of the local turbulence scales

or fluctuations, i.e. computational regions suitable

for LES-like simulations. Additionally, this blending

function, thanks to the shielding function fd, prevents

the activation of the LES mode in the boundary layer.

By way of example, the isocontours of the blending

function θ for the flow past a circular cylinder are

shown in Fig. 3. We can see in particular that in the

boundary layer the RANS model is activated, while

in the wake the LES approach is recovered.

Figure 3. Isocontours of the blending function

for the circular cylinder benchmark (Re= 106):

for θ = 1 (in red) the RANS model is activated,

wherever 0 < θ < 1 additional resolved fluctu-

ations are computed, and in the limit θ → 0 (in

blue) the LES approach (DVMS in this work) is

recovered.

2.5. Hybrid DDES/DVMS

The key idea of the proposed hybrid

DDES/DVMS model [4] is to use the DVMS

approach instead of the LES component of DDES

in locations where this component is expected to

be activated, especially in wake regions where the

DVMS approach allows more accurate prediction.

Assuming that the semi-discretization of the

DDES equations writes:
(

∂W
h

∂t
,Φi

)

+
(

∇ · F(W
h
),Φi

)

= −
(

τDDES(W
h
),Φi

)

,
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the hybrid equations are then defined by:

(

∂W
h

∂t
,Φi

)

+
(

∇ · F(W
h
),Φi

)

=

−θ
(

τDDES(W
h
),Φi

)

− (1 − θ)
(

τLES(W ′
h
),Φ′i

)

where W
h

denotes the hybrid variables and θ is

the blending function defined as in the previous

subsection.

3. NUMERICAL DISCRETIZATION

3.1. Numerical scheme

The governing equations are discretized in space

using a mixed finite-volume/finite-element method

applied to unstructured tetrahedral grids. The adop-

ted scheme is vertex-centered, i.e. all degrees of free-

dom are located at the vertices. The diffusive terms

are discretized using P1 Galerkin finite-elements on

the tetrahedra, whereas finite-volumes are used for

the convective terms. The numerical approximation

of the convective fluxes at the interface of neighbor-

ing cells is based on the Roe scheme [15] with low-

Mach preconditioning [16]. To obtain second-order

accuracy in space, the Monotone Upwind Scheme for

Conservation Laws reconstruction method (MUSCL)

[17] is used, in which the Roe flux is expressed as a

function of reconstructed values of W at each side

of the interface between two cells. A particular at-

tention has been paid to the dissipative properties of

the resulting scheme, since this is a key point for its

successful use in LES, and therefore in simulations

performed with a hybrid turbulence model. The nu-

merical dissipation provided by the scheme used in

the present work is made of sixth-order space deriv-

atives [18] and thus is concentrated on a narrow-band

of the highest resolved frequencies. This is expec-

ted to limit undesirable damping of the large scales

by numerical dissipation. Moreover, a parameter γ

directly controls the amount of introduced numerical

viscosity and can be explicitly tuned in order to re-

duce it to the minimal amount needed to stabilize the

simulation. Time advancing is carried out through an

implicit linearized method, based on a second-order

accurate backward difference scheme and on a first-

order approximation of the Jacobian matrix [19]. The

resulting numerical discretization is second-order ac-

curate both in time and space. It should be noted that

the spatial discretization used in this work leads to

a superconvergent approximation, i.e. the accuracy

can be well above second-order for some Cartesian

meshes. One can also add that the objective is not

a higher-order convergence but a strong reduction of

dissipation and a certain reduction of the dispersion

in the general case of a non-Cartesian (but not too

irregular) mesh.

3.2. Mesh adaptation for rotating machines

Our numerical model has been extended to rotor-

stator simulation with a Chimera technique.

The Chimera method aims at solving partial

differential equations by decomposition into subdo-

mains with overlap in order to avoid having to use

a global mesh. This method allows the communic-

ation between the computational subdomains thanks

to the overlapping of the subdomains. In our case we

consider a decomposition in two domains as shown

in Fig. 4, a fixed domain in red and a rotating do-

main in blue. For computations we start by locating

the boundary nodes of domain 1 in domain 2, and re-

ciprocally we locate the boundary nodes of domain

2 in domain 1, then the aerodynamic values of each

boundary node are determined by interpolation and

each domain performs its calculation with the new

interpolated values.

Figure 4. Definition of rotor and stator from an

initial mesh : in red, the stator, in blue the rotor,

and in gray, the overlap region.

A mesh adaptation loop based on a metric

depending of the Mach number has been combined

with the Chimera algorithm. The Transient Fixed

Point mesh adaptation algorithm [20, 21, 22] is

applied to each domain from a metric field evaluated

on the whole domain.

4. APPLICATIONS

4.1. Flow past a cylinder

The predictions of the flow around a circular

cylinder are presented. Two Reynolds numbers, 106

and 2 × 106, based on the cylinder diameter, D, and

on the freestream velocity, are considered. Only a

few numerical investigations have been performed

for Reynolds numbers higher than 106. This interval

is inside the supercritical regime which appears at

Reynolds number higher than 2 × 105 and for which

the separation becomes turbulent [23].

The computational domain is such that

−15 ≤ (x, y)/D ≤ 15, and −1 ≤ z/D ≤ 1

where x, y and z denote the streamwise, transverse

and spanwise directions respectively, the cylinder

axis being located at x = y = z = 0. The mesh

contains 4.8 millions nodes.

The Steger-Warming conditions [24] are imposed
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at the inflow and outflow. The flow is assumed to

be periodic in the spanwise direction. The inflow

Mach number is set to 0.1 so that the compressibility

effects can be considered as negligible. The free-

stream turbulence intensity is below 1%. In order

to control the computational costs, a wall law is

applied in the close vicinity of the wall. For accuracy

purpose, the Reichardt analytical law [25], which

gives a smooth matching between linear, buffer and

logarithmic regions, is chosen. As the y+ normalized

distance is generally subject to large variations in

complex flows, the wall law is combined with low

Reynolds modeling which locally damps the fully

turbulent model in regions in which the wall law

does not cover the buffer zone.

Reynolds number 106

The behavior of the hybrid models presented

in Section 2 are first investigated in terms of flow

bulk coefficients. From Table 1, it can be noted

that the predictions of these coefficients are glob-

ally in good agreement with the experimental data

and the numerical results in the literature. The lift

time fluctuations are nevertheless better predicted by

the RANS/DVMS model compared to the other two

hybrid models. This good behavior is confirmed by

the correct prediction of the distribution of the mean

pressure coefficient, see Fig. 5. On the other hand, it

can be observed from Table 1 and Fig. 5 that Smagor-

insky and WALE SGS models give globally compar-

able results. It is also worth noting that the RANS

model predicts rather well the bulk coefficients.

Fig. 6 shows instantaneous isocontours of the vor-

ticity magnitude for each of the turbulence models

used for this benchmark. As one might expect, the

unsteady RANS model is more dissipative and cap-

tures less flow detail than the hybrid models, with in

particular a much more damped and regular wake.

Figure 5. Distribution of the mean pressure coef-

ficient over the cylinder surface. Comparison

between experimental data and numerical results

at Reynods number 106.

Table 1. Bulk coefficients of the flow around a

circular cylinder at Reynolds number 106. The

subscripts S and W holds respectively for Smagor-

insky and WALE SGS models.

Cd C′
l

−Cpb θ

Present simul.

RANS 0.20 0.02 0.20 130

DDES 0.20 0.04 0.22 138

DDES/DVMSS 0.20 0.02 0.22 135

DDES/DVMSW 0.20 0.02 0.26 132

RANS/DVMSS 0.25 0.09 0.25 132

RANS/DVMSW 0.26 0.11 0.22 134

Other simul.

RANS [26] 0.40 - 0.41 -

LES [26] 0.31 - 0.32 -

LES [27] 0.27 0.12 0.28 108

Measurements

Exp. [28] - 0.24 0.33 -

Exp. [29] 0.22 - - -

Exp. [30] 0.25 0.32 - -

Exp. [31] - - - 130

Exp. [32] 0.2-0.4 0.1-0.15 0.2-0.34 -

Figure 6. Circular cylinder, Re= 106: instantan-

eous isocontours of the vorticity magnitude. From

top to bottom: RANS, DDES, DDES/DVMS and

RANS/DVMS.
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Reynolds number 2 × 106

The main outputs obtained by the RANS,

DDES, DDES/DVMS and RANS/DVMS models are

summed up in Table 2. Regarding the two hybrid

models using the DVMS approach, only the res-

ults obtained with the Smagorinsky SGS model are

shown, the WALE SGS model giving very similar

results. It can be noticed that all models overpredict

the separation angle, and that the fluctuations of

the lift coefficient are overpredicted by the RANS

and DDES/DVMS model. The RANS/DVMS ap-

proach gives on the whole the most satisfactory res-

ults. In Fig. 7, which shows the distribution of the

mean pressure coefficient, the numerical results ob-

tained with both hybrid models RANS/DVMS and

DDES/DVMS are in very good agreement with the

experimental results, in particular RANS/DVMS.

Table 2. Bulk coefficients of the flow around a cir-

cular cylinder at Reynolds number 2 × 106. The

subscript S holds for Smagorinsky SGS model.

Cd C′
l

−Cpb θ

Present simul.

RANS 0.26 0.066 0.30 128

DDES 0.28 0.038 0.27 132

DDES/DVMSS 0.26 0.070 0.35 130

RANS/DVMSS 0.24 0.030 0.30 132

Other simul.

LES/TBLE [33] 0.24 0.029 0.36 105

Measurements

Exp. [28] 0.26 0.033 0.40 105

Exp. [29] 0.32 0.029 - -

Figure 7. Distribution of the mean pressure coef-

ficient over the cylinder surface. Comparison

between experimental data and numerical results

at Reynods number 2 × 106.

4.2. Flow around a rotating cross

We present a preliminary computation obtained

with the combination of the mesh adaptation, the

Chimera approximation and the DDES model. They

are used for simulating the mixing process obtained

with the rotation of a cross in a cylindric box. The

Reynolds number is 1.8 million, based on the thick-

ness of the blades. The number of vertices of the

initial mesh is 10.466. After two turns, and five mesh

adaptations, the number of vertices of the adapted

mesh is 1.05 million.

Figure 8. DDES computation of a rotating mix-

ing device with a mesh adaptative Chimera ap-

proach (horizontal cut). View of the mesh and of

Q-factor (colored with velocity magnitude) after

the vertical upper blade.

Figure 9. DDES computation of a rotating mixing

device with a mesh adaptative Chimera approach

(horizontal cut). Partial view of the mesh and ve-

locity magnitude.

In Fig. 8a, we present a view of this final adap-

ted mesh. Mesh size normal to the cylinder is yet not

small enough to allow the creation of strong non-2D

features. This is verified from the examination of the
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Q-factor, Fig. 8b. Fig. 9 shows details of mesh and

velocity magnitude. It seems from this first calcula-

tion that despite the hign Reynold number, the flow

separates at blade angle is a rather stable mode.

5. CONCLUSION

Several hybrid strategies, based on the DDES,

RANS and DVMS models, are first evaluated for the

simulation of the supercritical flow around a circular

cylinder. This benchmark is characterized by turbu-

lent boundary-layer separation. The cylinder flow is

first computed at Reynolds 106. The predictions of

the main flow parameters are in overall good agree-

ment with experimental data and the results of simu-

lations in the literature, especially the RANS/DVMS

model. A second series of computations of the flow

past a circular cylinder is carried out at Reynolds 2×
106. The predictions obtained by the hybrid models

used to perform this benchmark are a little less accur-

ate compared to the previous Reynolds number, more

specifically for the mean separation angle which is

overestimated. Again, the RANS/DVMS model is

the hybrid model among those applied which gives

the best results overall. It is also to be noted that

the pressure distribution is well predicted by the hy-

brid models for both Reynolds numbers, especially

by the RANS/DVMS model. Then, the DDES for-

mulation is applied to the flow around a rotating

cross inside a cylinder with a Reynolds number of

1.8 × 106. Preliminary results using mesh adaptation

with meshes of 1 million vertices show that separ-

ations are more stable than in the flows around the

cylinder. RANS/DVMS computations are planned.

The new tool is also being applied to other rotating

devices like propellers and will produce mesh adap-

ted results for these geometries in a near future.
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