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ABSTRACT

The joint modeling of flow hydrodynamics and

electrokinetics is a relatively unexplored area of tur-

bulent flow research. We address a lack of available

models for electrohydrodynamic (EHD) turbulent

flow utilizing a lower-order approach, the stochastic

One-Dimensional Turbulence (ODT) model. ODT

is constructed on the principles of the direct energy

cascade of Navier–Stokes turbulence, with key em-

phasis on the accurate resolution of the small mo-

lecular transport scales within a notional line-of-

sight. We investigate two canonical flow configur-

ations to demonstrate the applicability of the model

in the simulation of EHD flows. First, we investig-

ate EHD effects in zero-pressure-gradient turbulent

boundary layers by two-way coupled model applic-

ation to plane Couette flow of a dilute electrolyte.

Second, we apply the one-way coupled model to

EHD-enhanced gas flow through a vertical pipe with

an inner concentric electrode, where electric fields

are generated by means of a corona discharge and

the corresponding effect of a continuum ionic charge

density field.

Keywords: EHD turbulence, multiphysical

boundary layers, one-dimensional turbulence,

stochastic modeling, turbulent drag enhancement

1. INTRODUCTION

Electrohydrodynamic (EHD) flows are en-

countered in various technical applications. As an

overview of research-led EHD applications we cite

examples of electrostatic precipitation [1], EHD-

enhancement of heat and mass transfer [2, 3], tur-

bulent drag [4], hydrogen production in water elec-

trolysis [5], plasma-assisted combustion [6], among

others. For numerical simulations of such devices, it

is crucial to accurately and economically model en-

tangled hydrodynamic and electrokinetic processes

down to and even below the Kolmogorov and Batch-

elor scales [7]. One of the key issues for accurate

modeling of EHD flows is the correct representa-

tion of nonlocal and nonlinear interactions between

the fluid flow, charge-carrier distributions, and elec-

tric fields. These interactions may cause a depar-

ture of the turbulence dynamics, e.g., from K41 [8]

to electrokinetic turbulence [9]. Indeed, on some

EHD regimes, turbulence may appear even at very

low Reynolds numbers, e.g., when the electric body

forces substitute the role of external inertial forces,

and the former are in a large ratio with respect to

the viscous forces [10]. Direct Numerical Simu-

lations (DNSs) should be the method of preferred

choice for unraveling the physics presents in EHD

flows. However, DNSs are, even to this day, limited

in terms of their heavy computational overload, i.e.,

limited to moderate Reynolds numbers [11]. Need-

less to say, diffusive sub-grid-scale parameterizations

used in Reynolds-averaged Navier–Stokes (RANS)

or large-eddy simulations (LES), specifically in the

presence of walls, are of limited applicability in EHD

flows. This is because turbulent drag modifications

are nonuniversal and, depending on the flow regime,

related to flow laminarization or turbulence regener-

ation by the action of spatially varying body forces

(e.g. [12, 13]) that require new modeling strategies.

Alternative to averaged and filter-based turbu-

lence models, we address issues in turbulent EHD

flows with a dimensionally reduced stochastic mod-

eling approach, the so-called One-Dimensional Tur-

bulence (ODT) model [14]. The model has the cap-

ability to capture detailed statistics of simultaneous

scalar and momentum transport in the vicinity of a

wall (e.g. [15]) and complex mixing processes in

the bulk (e.g. [16]). In general, ODT aims to re-

solve all relevant scales of the flow but only for a

one-dimensional (1-D) domain that represents a no-

tional line-of-sight. A stochastic process is used

to mimic the effects of turbulent stirring motions,

whereas deterministic molecular diffusion, electric

drift currents, Coulomb forces, and boundary con-

ditions, are directly resolved. For the present stand-

alone application to wall-bounded EHD turbulence,
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the ODT domain is aligned with the wall-normal

coordinate. This allows to resolve details of wall-

normal transport processes and to capture variable

momentum sources [16] and nonhomogeneous elec-

tric fields [17] if needed.

The rest of this paper is organized as follows.

Section 2 gives an overview of the ODT model for-

mulations for multiphysical wall-bounded flows with

an extension to EHD flows. Section 3 collects key

results partitioned into two-way coupled EHD Cou-

ette flow of dilute electrolytes and one-way coupled

EHD-enhanced vertical pipe flow with an inner con-

centric electrode. Last, in Section 4, we summarize

the two case studies.

2. FLOW MODEL FORMULATION

2.1. Overview of the ODT model

In decaying isotropic turbulence seen on a

line-of-sight through the turbulent flow (the ODT

line), piecewise-transformations on scalar profiles, or

triplet maps, induce an increase in the rate of strain,

which is characteristic of turbulent eddies. Symbol-

ically, the effect of the triplet map f (y) on an instant-

aneous profile of the property field ψ(y) is denoted

as the transformation ψ(y)→ ψ( f (y)) (in a y-oriented

wall-normal domain of a Cartesian coordinate sys-

tem) [14]. The triplet map microscopically models

turbulence phenomenology. It takes a property pro-

file along a selected size l interval, compresses the

profile to l/3, pastes two copies of this profile to fill

again, and flips the central copy to ensure continuity.

Such mapping events are stochastically sampled

from unknown distribution functions with the aid of a

Poisson process (e.g. [18]). Based on assumed distri-

bution functions for the mapping event size l and loc-

ation y0, an efficient thinning-and-rejection method is

used for probabilistic selection, in which the rate of

implementation of the mappings is calculated in ac-

cordance with the local turbulence time-scale (eddy

turnover time τ). The latter is obtained from the

available energy of the current flow state. Under ab-

sence of body forces, the available energy follows

from the velocity shear across a size-l interval around

location y0 [14] since the eddy kinetic energy, l2/τ2,

is proportional to the squared eddy velocity, u2
K

. This

scale velocity is modified when eddy-available po-

tential energy and viscous effects are taken into ac-

count as detailed below. A factor of proportionality

that controls the rate of implemented mapping events

is included in the model as a rate parameter, C. The

kinetic energy and the rate-of-strain are related by

means of an equivalent turbulent diffusivity. The im-

plementation of a given map at fixed turbulent diffus-

ivity then favors the sampling of further mappings.

This is the model representation of the turbulent kin-

etic energy cascade [14].

The set of operations comprising the sampling

process and the mappings themselves is known as an

eddy event. For decaying isotropic turbulence, there

are still two other elements required in the model to

complete a consistent dynamic picture of turbulence.

One is a mechanism for viscous transport implement-

ation, and the other one is a mechanism for turbu-

lence kinetic energy (TKE) dissipation. Both are a

consequence of the viscous momentum flux, which

is implemented in a direct way in ODT, by resolv-

ing the corresponding numerical fluxes in the 1-D

domain after an eddy event has been sampled [14].

This leads to the formulation of a symbolic 1-D par-

tial differential equation (PDE) for a scalar velocity

component ψ in ODT. Specialized to Cartesian co-

ordinates in a temporal ODT formulation, this is

∂ψ

∂t
= M −

∂F(ψ)

∂y
. (1)

Here, F(ψ) is the model-resolved flux of ψ, e.g.,

F(ψ) = −σ (∂ψ/∂y) for molecular diffusive gradi-

ent fluxes in which σ is a kinematic diffusion coeffi-

cient. M = M(C, y, f (y)) represents discrete mapping

effects that punctuate deterministic evolution of the

conserved scalar ψ(y, t) at discrete times. The map-

ping effects depend on the selected physical mapping

f (y), which models turbulent microstructure, and a

turbulent eddy rate parameter C. Note that there is an

alternative spatial ODT formulation, which is gener-

ally treated as a reinterpretation of the parabolic tem-

poral ODT formulation. Details on the spatial for-

mulation are omitted here, but these can be found in

other ODT publications [19, 20, 21].

2.2. Model formulation for temporally de-

veloping planar wall-bounded flow

The presence of walls introduces a wall-normal-

position dependence on the turbulent scalar transport.

Close to the wall, viscous transport is dominantly

one-dimensional, aligned with the wall-normal dir-

ection. Away from the wall, viscous transport may

have a more inherent three-dimensional (3-D) char-

acter, although the turbulent transport may domin-

ate instead. The transition between the near-wall and

away-from-the-wall behavior is controlled in ODT in

practical terms by the model parameter Z. The latter

defines a viscous penalty by setting a lower limit be-

low which eddy implementation is suppressed [22].

This imposes the dominance of the viscous transport.

Another important dynamical feature in wall-

bounded flows is the anisotropy of the velocity stat-

istics. In this context, the role of the turbulent

pressure transport is the redistribution of the TKE

among the Reynolds stress components [23]. In

ODT, this pressure-scrambling effect is modeled with

the aid of a kernel function K(y) = y − f (y) [22].

Eddy events are modified to implement mappings, as

well as the kernel effects for velocity components,

such that ψ(y)→ ψ( f (y)) for a conserved scalar, and

ui(y)→ ui( f (y)) + ciK(y) for the Cartesian velocity

components ui, i = 1, 2, 3. As detailed in [22], ci is

a kernel coefficient calculated based on the available

energy and a model parameter α ∈ [0, 1] that con-

trols the efficiency of inter-component kinetic energy
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redistribution, such that

ci =
1

∫ y0+l

y0
ρK2 dy

(

ui,K + sgn
(

ui,K

)

×
√

(1 − α) u2
i,K
+
α

2

(

u2
j,K
+ u2

k,K

)

)

.

(2)

Here, ui,K =

∫ y0+l

y0
ρui( f (y))K(y) dy, where ρ is the

uniform density, and (i, j, k) permutations of (1, 2, 3).

The expression for τ, or in this case τ−2, consid-

ering ui,K as the available kinetic energy for redistri-

bution, as well as the viscous penalty factor, is based

on [22],

τ−2
=

2K0
∫ y0+l

y0
ρK2(y) dy

×
(

K0

∑

i u2
i,K

2
∫ y0+l

y0
ρK2(y) dy

−
Z

2

µ2
eddy

ρeddyl2

∫ y0+l

y0

dy

)

.

(3)

Here, K0 =

(

l2
∫ y0+l

y0
dy

)−1
∫ y0+l

y0
K2(y) dy, which con-

verges to 4/27 in the continuum kernel limit. Addi-

tionally, µeddy and ρeddy are weighted averages of the

dynamic viscosity and the density within the eddy

range [y0, y0 + l]. The density and dynamic viscosity

of the fluid are assumed as constants, and of uniform

value.

Eddy events are sampled in time on the basis

of an acceptance probability Pa, following a Pois-

son process. The value of Pa for a selected candidate

eddy event is calculated as in [14] based on the cur-

rent flow state. Considering the rate parameter C, the

acceptance probability is given by

Pa = C
∆ts

τ

1

l2χ(l, y0)
< 1. (4)

Here, ∆ts is a sampling time interval that needs to

be able to resolve any possible eddy turnover time τ.

Hence, we select ∆ts < τ, which is adapted dynam-

ically in the implementation (see [22]). Furthermore,

χ(l, y0) is a presumed joint probability density func-

tion (JPDF) of eddy event sizes and locations which

is used to obtain reasonable candidate events. Over-

sampling and rejection guarantees that ODT simula-

tion results are insensitive to the exact choice of this

JPDF.

After an eddy event is implemented, the de-

terministic evolution is comparable to that in

Eq. (1). With the model resolved viscous flux

Fi(ui) = −ν (∂ui/∂y), mapping (Mi) and kernel, as

well as momentum sources for the selected compon-

ent i, we obtain

∂ui

∂t
= Mi + Ki + S i + ν

∂2ui

∂y2
. (5)

This expression incorporates now symbolically the

effects of the kernel, and of the energy redistribution

among velocity components, by means of the term

Ki(C,Z, α, u, f (y)). S i is a source term for the i-th

velocity component to be integrated together with the

viscous flux, e.g., a fixed pressure gradient (FPG).

2.3. Extension to spatially developing flow

with variable density effects

The model formulation presented in Section 2.2

considers the temporal change of scalar profiles

along a line-of-sight through the turbulent flow, and

is generally referenced as T-ODT. An extension of

the model to capture streamwise fluxes of spatially

evolving flows (e.g., boundary-layer-type flows) has

been presented in [14, 24] and is denoted by S-

ODT. More importantly, [24] also present a variable-

density formulation for low Mach number flows. In

both variable-density T-ODT and S-ODT, a second

kernel function J(y) = |K(y)| is introduced in order to

facilitate enforcement of physical conservation prop-

erties.

For variable-density flow, the various integral

expressions above receive the mapped mass dens-

ity such that ρ → ρ
(

f (y)
)

. In variable dens-

ity T-ODT, the calculation of the available kin-

etic energy ui,K changes accordingly. The fractions

ui,K

/ ∫ y0+l

y0
ρK2(y) dy and u2

i,K

/(

2
∫ y0+l

y0
ρK2(y) dy

)

in

Eqs. (2) and (3), change to Pi/(2S ) or P2
i
/(4S ), re-

spectively, where, as in [24],

Pi = ui,K − H

∫ y0+l

y0

[ρui]
(

f (y)
)

J(y) dy, (6)

S =
H2
+ 1

2

∫ y0+l

y0

ρ
(

f (y)
)

K2(y) dy

− H

∫ y0+l

y0

ρ
(

f (y)
)

J(y) K(y) dy,

(7)

H =

∫ y0+l

y0
ρ
(

f (y)
)

K(y) dy

∫ y0+l

y0
ρ
(

f (y)
)

J(y) dy
. (8)

In the S-ODT model, the streamwise change of

the scalar profiles in the line-of-sight through turbu-

lence is studied. Two variants arise in this case. One

is the conservative boundary-layer formulation [24],

and another the non-conservative wall-constrained

internal-flow formulation [20]. Essentially, in S-

ODT, all integrals in Eqs. (6–8), as well as the in-

tegrand of
∫ y0+l

y0
ρK2(y) dy in the prefactor in Eq. (3),

receive an additional multiplication by u( f (y)), the

mapped streamwise advecting velocity (see [20, 24]

for details). The time-scale τ changes to a stream-

wise length-scale ξ, and the temporal sampling ∆ts

changes to a streamwise sampling ∆xs [24]. Symbol-

ically, the S-ODT equivalent of Eq. (5) has a modi-

fied left-hand side and reads

u
∂ui

∂x
= Mi + Ki + S i + ν

∂2ui

∂y2
. (9)
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2.4. Extensions to cylindrical geometry

An additional model extension, or a generaliz-

ation of the T-ODT and S-ODT formulations for

both Cartesian and cylindrical flows, considering a

dynamically adaptive mesh, was presented in [19].

The cylindrical formulation replaces the planar co-

ordinate y for the radial coordinate r, while any line-

integral
∫

(·) dy in all of the equations presented so

far, changes to a surface radial integral of the form
∫

(·) r dr. Eqs. (1) and (9) also consider a change in

the form of the gradient flux. The generalized scalar

conservation equation, Eq. (1), becomes

∂ψ

∂t
= M(C,Z, r, f (r)) −

1

r

∂
(

rF(ψ)
)

∂r
, (10)

where F(ψ) = −σ (∂ψ/∂r) for the model resolved

radial molecular diffusive flux. The specific form of

the viscous flux for every velocity component in the

cylindrical coordinate system is given in [20].

Note that [20] also introduces a variable-density

formulation in which the density is treated as an act-

ive scalar, coupled with the evolution of the temper-

ature. The temperature and density states are coupled

by the ideal gas law and the divergence condition dur-

ing the deterministic evolution between subsequent

eddy events. This procedure is the equivalent of the

enforcement of mass and energy conservation.

2.5. Incorporation of EHD effects

Incorporation of EHD effects is done by the im-

plementation of an appropriate form of the Coulomb

forces and by the account of the change in electro-

static potential energy in the ODT eddy sampling

procedure. The Coulomb force density is given by

ρ f Ei, which is a body force that can be implemen-

ted in the ODT momentum equations, e.g., Eq. (9)

(in such case, per unit mass density of the fluid).

Here, ρ f = e(n+c+ − n−c−), is the continuum dens-

ity of free charges due to positively (+) and negat-

ively (−) charged scalars (i.e., electrochemical spe-

cies or tracers) with concentration c± and valence n±
multiplying the unit charge e on an electron, and by

Faraday’s law for nonmagnetic media, the electric

field is given by Ei = −∂Φ/∂xi, where Φ denotes

the total electrostatic potential and (xi) = (x, y, z)T

the Cartesian coordinates. The concentrations c±
obey individual scalar conservation equations sim-

ilar to Eq. (1), but also other formulations special-

izing to electron an ion currents are possible. Cou-

lomb forces acting perpendicular to the ODT line are

treated straightforwardly as momentum sources [17]

that drive turbulence by an increase of velocity shear,

whereas those acting along the ODT line affect the

eddy rate analogous to gravity [14, 25] as detailed

below.

The main goal for the present application cases

is capturing leading-order EHD effects that are asso-

ciated with a modification of the boundary-layer dy-

namics. Hence, the developed ‘minimal flow model’

shall be able to capture wall-normal contributions

to nonuniversal EHD turbulence circumventing com-

putation of 3-D electric fields. For the stand-alone

ODT application to EHD channel and pipe flows con-

sidered here, it is assumed that all property fields are

not only statistically but also momentarily approxim-

ately homogeneous in the lateral directions. Avail-

able reference DNS [4] indicate that this assumption

is reasonable for the background mean state justify-

ing application to cases with weak fluctuations.

The transfer of electrostatic potential energy to

kinetic energy of the flow, or vice versa, is the mech-

anism for implementation of the effects of the work

performed by the flow against Coulomb forces by a

notional eddy turnover, represented as the instant-

aneous application of the triplet map f (y) for the

wall-normal coordinate y. For the application cases

analyzed here, only the effects of a resolved elec-

tric field along the ODT line are considered, thus

any electrostatic potential energy involved in the for-

mulation is due to the resolved E2 component of the

electric field. Non-resolved components E1 and E3,

that are zero on average for the cases at hand, are

neglected. In that sense, there is no direct contribu-

tion to the mean kinetic energy by ρ f Ei, given that

the modeled effect is simply seen as a modification

of the pressure gradient in the line direction. Any

EHD-enhancement (or loss), is then a consequence

of a modified fluctuating pressure transport, which

is modeled in ODT by the kernel kinetic energy re-

distribution. This is the formulation equivalent of a

modification in the Reynolds stress tensor compon-

ents, which is conceptually comparable to the dis-

cussion in [26] on the effect of electric body forces.

The form of the change in electrostatic poten-

tial energy, ∆Epot, results from the work performed

on the fluid due to the energy release from the

pre-mapped to the post-mapped state analogous to

buoyancy [14, 25]. ∆Epot has to be added within

the square bracket of Eq. (3) for EHD-enhanced

sampling. Likewise, it requires a multiplication by

4S under the square root of Eq. (2) for potential en-

ergy redistribution due to the ODT kernel. Specializ-

ing to Cartesian coordinates, we have

∆Epot = −
∫ y0+l

y0

[

ρ f ( f (y))Φ
(

ρ f ( f (y))
)

− ρ f (y)Φ
(

ρ f (y)
)

]

dy.

(11)

In addition to this equation and the solution of

Eq. (5), the 1-D conservation equation for ρ f , and

the Nernst–Planck equation, are solved together with

the 1-D representation of Gauss’ law for the elec-

tric potential, ∂(ϵEi)/∂xi = ρ f , as well as Faraday’s

law, Ei = −∂Φ/∂xi, for a known electric permittiv-

ity ϵ and the dynamically resolved component i = 2,

which is acting along the ODT line and energetically

influences turbulent eddy implementations.

The above considerations yield two different

types of EHD coupling. In the one-way coupling

case, the Nernst–Planck equation reduces to a zero-
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divergence condition for the electric current density

[27]. This results then in a uniform electric current

density along the ODT line (planar Cartesian case).

Electroquasistatic fields are calculated before hand

and remain fixed during the simulation. In the case of

two-way coupling, the Nernst–Planck equations are

similar to Eq. (1). An explicit numerical solver is

used in which the model resolved instantaneous pro-

file of Φ(y) is obtained by numerical solution of a

1-D Poisson equation by application of the Thomas

algorithm whenever ρ f (y) has changed.

3. RESULTS

Turbulent electroconvection exhibits different

flow regimes that may be categorized by the rel-

ative strengths of the Coulomb, viscous, and iner-

tial forces. In addition, the relaxation processes of

free electric charges and their coupling to electric

fields within the working fluid need to be taken into

account. Typical applications are heat transfer en-

hancement (e.g. [3]) due to weak coupling and flow

control (e.g. [4]) due to strong coupling. Below,

we begin with the strongly coupled regime for plane

Couette flow of a dilute electrolyte. After that, we

turn to the weakly coupled regime for vertical pipe

flow with an inner concentric electrode.

3.1. Drag enhancement in turbulent EHD

Couette flow

In this section we consider a simple model for

strongly coupled wall-bounded EHD turbulence in a

Couette-type flow of a dilute electrolyte. The flow

configuration is sketched in Figure 1 and corresponds

with that in [4]. The top wall is moving and held at a

different voltage relative to the bottom one. No-slip

isopotential zero-flux wall-boundary conditions are

prescribed. The T-ODT model set-up uses C = 10,

Z = 600, α = 2/3 as in [28]. The electrolytes

considered have neutral bulk charge and consist of

two identical ionic scalar species ψ = c± with the

same valence and mobility but opposite charge. The

model-resolved deterministic ion fluxes in accord-

ance with Eq. (1) thus have diffusive and drift con-

tributions so that

F±(c±) = −D
∂c±

∂y
∓ Dc±

VT

∂Φ

∂y
. (12)

In analogy to [4], scaling of the Poisson–Nernst–

Planck and Navier–Stokes equations (or the dimen-

sionally reduced ODT representation of them) yields

five dimensionless control parameters that define the

flow state: the bulk Reynolds number, Re = Uh/ν,

the ionic Schmidt number, Sc = ν/D, the dimen-

sionless voltage, V̂ = 2V/VT , which is varied across

the range 0–40, the fixed coupling constant, β =

ϵV2
T
/(ρνD) = 0.5, and the fixed normalized Debye

layer thickness, λD/h =
√

ϵVT /(2ρc0eh2) = 0.01.

In these expressions, U denotes the prescribed wall

velocity magnitude, h the channel half-height, VT =

kBT/e the thermal voltage, D the kinematic diffusiv-

Figure 1. Sketch of the EHD Couette configur-

ation with temporally developing flow. The one-

dimensional computational domain (ODT line) is

fixed in space and approximately taken as closed

system in order to facilitate utilization of ODT as

stand-alone tool.

Figure 2. ODT prediction of the turbulent drag

enhancement as function of Sc for various Re and

V̂ for fixed β = 0.5 and λD/h = 0.01, as well as fixed

ODT model parameters. Connected symbols are

for V̂ = 10. For fixed Sc, the drad increases with

V̂ (arrows). Reference DNS (×) is from [4].

ity of the ions in the electrolyte, and c0 the uniform

initial concentration of the univalent ion species, re-

spectively, in addition to the other physical paramet-

ers introduced above.

Note that Re is the only direct control parameter

for the flow regime. V̂ is an additional control para-

meter that parameterizes the internal energy and thus

takes the role of an equation of state. The three

remaining parameters are related to the electrolyte:

Sc gives the ratio of the viscous and scalar (ionic)

diffusion coefficients; λD/h is a relative measure of

electric charge separation that also determines the

electric and ionic layers at the electrodes; and β ex-

presses the strength of typical Coulomb forces in

units of typical viscous forces. In a concentrated

(dilute) ionic liquid (e.g. [29]), dielectric polariza-

tion is strong (weak) so that the dielectric permittiv-

ity is large (small). For constant electric charge on

the ions, the Debye length has to increase (decrease)

with β so that we do not consider β a variable control

parameter. Instead it is kept fixed at β = 0.5 [4].
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Figure 3. Dimensionless mean velocity defect

ū+(y+) for various Re (vertically shifted) and Sc

with V̂ = 10, β = 0.5, λD/h = 0.01, and fixed

ODT model parameters. The empirical law of the

wall (dotted; see, e.g., [32]) for hydrodynamic flow

without EHD effects is given for orientation.

Figure 2 shows the skin friction drag coefficient

C f , which is, for Couette flow, evaluated based on

the Reynolds-averaged streamwise velocity profile,

ū(y) = u(y, t), as

C f = 2
u2
τ

U2
with uτ =

√

ν

∣

∣

∣

∣

∣

dū

dy

∣

∣

∣

∣

∣

wall

. (13)

ODT pre-simulations conducted for V̂ = 0 (absence

of EHD effects; not shown here) agree with corres-

ponding purely hydrodynamic reference experiments

[30] within 2–5% yielding C f ,0 ≈ 5.9 × 10−3 for

Re = 3000 and C f ,0 ≈ 4.7 × 10−3 for Re = 12,000,

respectively. This level of agreement is also exhib-

ited by the EHD-enhanced cases at Sc ≃ 1 that

only mildly overestimate available reference DNS as

shown in Fig. 2. In fact, present ODT results suggest

that the turbulent drag is largely insensitive to EHD

effects for Sc ≲ 10.

A significant increase of the turbulent drag can

be seen in Fig. 2 for Sc ≳ 30 up to ≈ 30% for

Sc ≥ 300 at Re = 12,000 investigated. The mag-

nitude of the effect increases with Sc, Re, and V̂ .

Interestingly, ODT predicts a regime change for the

critical Schmidt number Sccrit ≃ 30, which agrees

with an inferred value of Sccrit ∼ O(10) suggested by

[4] based on DNS, albeit it remained elusive if drag

increases or decreases due to enhanced coupling. In

any case, the ODT prediction suggests that Re must

be large enough so that the turbulent scaling cascade

is broad enough to be sensibly influenced by EHD

effects [31].

Figures 3 and 4 show wall-normal profiles of the

dimensionless mean velocity deficit ū+ over the di-

mensionless boundary layer coordinate y+ given by

ū+ =
|ū − uwall|

uτ
, y+ =

yuτ

ν
. (14)

ODT simulation results are shown for various Re, Sc,

and V̂ in order to assess which region of the bound-

Figure 4. Dimensionless mean velocity defect

ū+(y+) for various Re (vertically shifted) and V̂

with Sc = 30 analogous to Fig. 3.

ary layer is influenced by EHD effects. The hydro-

dynamic law of the wall (e.g. [32]) is given for ori-

entation for the intersecting viscous sub and log lay-

ers, ū+(y+) = y+ for y+ < 5 and ū+(y+) = κ−1 ln y++B

with κ = 0.39 and B = 4.2 for y+ > 30, respectively.

ODT results for V̂ = 0 (without EHD effects) repro-

duce the sub and log layer exactly, though with some

deficit in the buffer layer at around y+ ≃ 30 when

compared with reference data [4] (not shown here for

clarity). For finite V̂ ≳ O(10), boundary layer sim-

ilarity is broken first in the bulk and outer layer for

the ODT simulations with Re = 12,000 and Sc = 30.

For further increasing Sc or V̂ , the entire log region

is affected while near-wall similarity is exactly main-

tained for y+ < 10 and approximately maintained for

10 < y+ < 100. Decreasing ū+ for increasing Sc or V̂

reflects the increase in uτ due to which C f increases

so that the trends in Figs. 3 and 4 are consistent with

those in Fig. 2.

Altogether, the results obtained demonstrate that

ODT is a lower-order but high-fidelity flow model

that is able to predict sensible mean effects in two-

way coupled EHD turbulence for at least moder-

ately high Re and Sc. This regime is presently in-

accessible to DNS and not faithfully treatable with

LES or RANS due to the inapplicability of model-

ing assumptions involved. A 3-D extension of the

stochastic model (e.g., based on ODTLES [33, 34] or

AME [35]) and dedicated reference experiments are

needed in order to asses the 1-D model prediction in

order to clarify its applicability to EHD turbulence.

3.2. Drag enhancement in turbulent EHD

vertical pipe flow

In this section we present the results for a one-

way coupled EHD pipe flow simulation with an in-

ner concentric electrode, which resembles the experi-

mental electrostatic precipitator (ESP) device of [36].

In the following, we slightly extend a recent compre-

hensive ODT study [21] on pipe flow ESP, which was

conducted by two of the authors and that addresses

the application case and modeling in more detail.

A sketch of the flow configuration is shown in
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Figure 5. In the ODT simulations, the radially ori-

ented S-ODT line is advected upwards with the flow

through the ESP, i.e., this is a spatial ODT formula-

tion. The cylindrical pipe flow is subject to an elec-

tric field induced by a (positive) corona discharge

originated at the electrode. We only consider one-

way coupled electric fields which are not modified

by fluctuations in ρ f , yet equally affect the stochastic

random sampling as described in Sec. 2.5. Electric

charges (positive ions in air) are assumed as a con-

tinuum phase. For details on the generation of the

electroquasistatic (EQS) fields and on the general im-

plementation, please refer to [21] or [37]. In addition

to the electrostatic potential energy formulation used

during eddy events, we also incorporate the Joule

heating as a source term to resolve during the determ-

inistic advancement of the temperature equation, see

[21, 37].

The objective of the simulations is the evaluation

of the friction drag, which is represented in [36] by

the Darcy friction factor,

fD = −
4R

ρbU2
b

dp

dz
, (15)

where R is the outer radius of the cylindrical pipe

ESP. The mean flow is axially symmetric due to

geometry. Hence, dp/dz can be obtained from the

Reynolds-averaged momentum equations, neglecting

turbulent correlations of the molecular dynamic vis-

cosity. Indeed, the wall pressure difference, between

the outlet and the inlet of a pipe section of finite

length ∆, can be calculated as

∆pw =

−
2

R2
∆

( ∫ R

0

⟨ρu1u1⟩ r dr − R2

(

⟨µ⟩
∂⟨u2⟩
∂r

)
∣

∣

∣

∣

∣

∣

R

)

−
2

R2
∆

( ∫ R

0

⟨µ⟩
∂⟨u2⟩
∂r

r dr

)

−
2

R

∫ BTS

0

τwdz

−
JR

β f

,

(16)

where ∆ refers to a difference between the location

of the outlet (i.e., z = BTS) and the inlet (i.e., z = 0)

of the simulated device. JR is the uniform radially

weighted electric current density, which is obtained

from the voltage-current values given as an input to

the simulation, and β f is the mobility of the free

ionic charges. Eq. (16) allows an approximation of

the average pressure gradient required for Eq. (15) as

dp/dz ≈ ∆pw/BTS.

Figure 6 shows the ensemble average of the in-

let profiles used in the S-ODT simulations. Two dif-

ferent types of profiles are used based on the geo-

metry of the experimental device. Unlike a tradi-

tional pipe flow, the configuration in Fig. 5 includes

an internal electrode boundary, which imposes a no-

slip condition at the electrode. Note that the sketch

provided in Fig. 5 corresponds to the test section of

the experimental device, see [36]. The device pos-

sesses an entry section, which is supposed to provide

Figure 5. Sketch of the spatially developing EHD

vertical pipe flow. The ODT line is advected up-

wards with the momentary axial velocity during a

simulation run. I , 0 refers to the electrical cur-

rent needed to inject charge carriers at the axis by

a corona discharge.

a fully developing flow at the inlet of the test section.

However, a verification of the hydrodynamic entry

length LH (see [39]) performed for one of the Reyn-

olds number cases in [36], Reb = 4000, shows that

LH is larger than the sum of both device entry and test

section lengths. Therefore, we evaluate both fully de-

veloped turbulent inlet profiles (generated with a cyl-

indrical T-ODT formulation), as well as equivalent

turbulent flow profiles achieving a target developing

fD value. The latter is calculated according to the ac-

tual entry and test section lengths, and the formula

provided in [39].

Figure 7 shows the results for the evalu-

ation of fD. The experimental device has radius

R = 1.6 × 10−2 m, test section length BTS = 1.02 m,

and entry section length Bentry = 1.59 m. The in-

ner concentric electrode of the device has radius

Relec = 1.25 × 10−4 m, and length Belec = 2.05 m.

The inlet gas flow is assumed at atmospheric pres-

sure with uniform fluid properties (Prandtl number

Prair ≃ 0.71) at a temperature T0 = 300.15 K. The

inlet flow has a bulk velocity Ub = 2 m/s, and as-

sociated Reb = 4000. We evaluate three different

Masuda numbers: Md ≈ 1.97 × 104, 1.27 × 105, and

3.17 × 105, on top of the neutral (no EHD) pipe flow

condition. The Masuda number (e.g. [40, 41]) is here

defined as Md = ϵ0Φel (Φel − Φon)
/

(ρ0ν
2
0
), where ϵ0

is the vacuum electrical permittivity, ρ0 and ν0 the

reference mass density and kinematic viscosity of the

gas, respectively, Φel = V the electrode operating

voltage, and Φon the corona-discharge onset voltage

(both voltages are measured in the experiments) rel-

ative to the grounded pipe with voltage Φpipe = 0.
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Figure 6. Ensemble average of initial (inlet) con-

ditions for the evaluated Re = 4000 pipe flow (see

description in text). The reference DNS is from

[38] and shown for comparison.

Figure 7. ODT prediction of the enhancement of

the Darcy friction factor fD with the dimension-

less EHD body force (Masuda number Md). Ref-

erence experiments are from [36].

Despite the friction factor evaluation being

simply an integral quantity of the flow, the results

obtained by the ODT simulations (see Fig. 7) are

worth commenting due to the multiphysical nature

of the application. This is neither an application that

can be easily evaluated by DNS nor treated faithfully

with LES or RANS. ODT provides small-scale res-

olution and dynamical complexity by capturing rel-

evant physical processes at feasible cost. The relat-

ive contributions to the pressure gradient according

to Eq. (16) are thus model predictions. It has been

verified that the largest contribution to dp/dz is due

to the wall shear stress τw, and in second place, by

the average kinetic energy gradient. The latter is the

reason why the utilization of developing flow inlet

conditions are necessary to obtain a model prediction

that reasonably captures the reference experiments.

4. SUMMARY

EHD turbulence denotes a chaotic flow that is

influenced by inertial, viscous, and Coulomb forces

across a range of scales. Dynamical processes are

nonuniversal and reach down to the Kolmogorov

scale [8], ηK , and Batchelor scales [42], Sc−1/2ηK ,

placing a strong burden on numerical simulation

and modeling. For EHD turbulence it has been

shown recently that the smallest scales for the flow

kinetic energy and, hence, also high-Sc transpor-

ted scalars are not the Kolmogorov and Batchelor

scales, but new characteristic EHD scales [7, 13].

These emerging scales can be even smaller than the

Kolmogorov and Batchelor scale increasing the cost

of numerical simulation of EHD turbulence. In ap-

plications, like membraneless redox flow [43] and

liquid metal [44] batteries, but alao in wire-plate

precipitators [17], EHD flows are confined so that

velocity and scalar boundary layers, in particular

Debye layers, at domain walls and internal inter-

faces have to be resolved. Resolution and predict-

ability requirements are addressed here by utilizing

the stochastic One-Dimensional Turbulence (ODT)

model for regime-overreaching numerical investiga-

tion of wall-bounded EHD-enhanced flows.

For two-way coupled EHD Couette flow, ODT

predicts EHD-enhanced outer layer turbulence that

nonlocally affects the entire turbulent boundary layer.

Turbulent drag increases for Re ≳ 104 and Sc ≳ 30

suggesting that charge carriers have to be immobile

enough to get stirred down to the turbulent micro-

scales in order to yield strong interactions between

hydrodynamics and electrokinetics. Present ODT

results suggest that at least
√

Sc ≳ 5 (based on

the Batchelor scale) times smaller length scales are

needed in the transported electric scalar than in the

velocity field.

In one-way coupled vertical EHD pipe flow with

a coaxial central electrode, ODT hints at transient ef-

fects in a developing turbulent flow. Turbulent drag

is enhanced by an EHD-based amplification of the

rate of change of the turbulent kinetic energy as re-

vealed by an analysis of the contributions to the pres-

sure drop per unit pipe length. Based on boundary-

layer similarity, we assert that the mechanism is at

work for the radial direction in the EHD gas-phase

pipe flow is similar to that in EHD Couette flow of

an ionic liquid.

Altogether, ODT is a self-contained, dimen-

sionally reduced flow model that combines fidelity,

predictability, and numerical efficiency. We have

demonstrated its applicability to EHD-enhanced

flows for future application as sub-filter-scale model.
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