
Conference on Modelling Fluid Flow (CMFF’22)

The 18th International Conference on Fluid Flow Technologies

Budapest, Hungary, August 30-September 2, 2022

State of Art and Challenges in Computational Aeroacoustics

Manfred KALTENBACHER1, Stefan SCHODER1, Clemens FREIDHAGER1

1 Institute of Fundamentals and Theory in Electrical Engineering , Graz University of Technology (TU Graz). Inffeldgasse 18, 8010 Graz,

Austria. E-mail: manfred.kaltenbacher@tugraz.at

ABSTRACT

Aeroacoustics is a young physical and engin-

eering discipline and a topic of strong ongoing re-

search. Basically, all physical phenomena of flow

induced sound are described by the set of compress-

ible flow equations. To achieve a deeper physical un-

derstanding of the sound generation phenomena, the

sound propagation and its interaction, physical mod-

els and appropriate numerical simulation schemes

are needed. In doing so, the physics of the famous in-

homogeneous wave equation of Lighthill and its ex-

tensions, as well as perturbation equations based on

systematic decomposition of physical field properties

are discussed. Furthermore, three different bench-

mark cases are presented, which serve as important

building blocks for the development of new physical

models and numerical simulation schemes.

Keywords: Aeroacoustics, analogies, perturba-

tion equations, Helmholtz decomposition

NOMENCLATURE

c [m/s] speed of sound

H [m2 / s2] total enthalpy

L [m/s2] Lamb vector

lch [m] characteristic length scale

Ma [-] Mach number

n [-] unit normal vector

p [Pa] total pressure

p [Pa] time mean pressure

p′ [Pa] fluctuating pressure

pa [Pa] acoustic pressure

pic [Pa] incompressible pressure

T [Pa] Lighthill tensor

uch [m/s] characteristic flow velocity

u [m/s] total velocity vector

u [m/s] time mean velocity vector

ua [m/s] acoustic particle velocity vector

uic [m/s] incompressible velocity vector

x [m] observer coordinate vector

y [m] source coordinate vector

δ [-] Kronecker delta

λ [m] wavelength

ρ [kg/m3] total density

ρ′ [kg/m3] fluctuating density

ρa [kg/m3] acoustic density

τ [N/m2] viscous stress tensor

ϕ [m2/s] scalar flow potential

ψ [m2/s] scalar acoustic potential

ω [1/s] vorticity vector

Subscripts and Superscripts

a acoustic

c compressible

ch characteristic

ic incompressible

ref reference

- temporal mean

0 constant physical value

1. INTRODUCTION

The sound generated by a flow in an unboun-

ded fluid is usually called aerodynamic sound. Most

unsteady flows in technical applications are of high

Reynolds number, and the acoustic radiation is a very

small by-product of the motion. Thereby, turbulence

is usually produced by fluid motion over a solid body

and/or by flow instabilities.

Since the beginning of computational aeroacous-

tics (CAA) several physical models and numerical

schemes have been developed, each of these trying

to overcome the challenges for an effective and ac-

curate computation of the radiated sound. The chal-

lenges that have to be considered for the simulation

of flow induced sound include [1, 2, 3, 4]:

• Energy disparity and acoustic inefficiency:

There is a large disparity between the energy

in the flow and the radiated acoustic energy. In

general, the total radiated power of a turbulent

jet scales with O(u8
ch
/c5) (uch is the character-

istic flow velocity and c the speed of sound), and
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pressure fluctuations on surfaces inside the flow

scales with O(u6
ch
/c3).

• Length scale disparity: Large disparity also oc-

curs between the size of an eddy in the turbulent

flow and the wavelength of the generated acous-

tic sound. Eddies with characteristic length

scale lch, velocity uch, lifetime lch/uch, and fre-

quency f radiate acoustic waves of the same

characteristic frequency, but with a much larger

length scale being the acoustic wavelength

λ ∝ c
lch

uch

=
lch

Ma
. (1)

In Eq. (1) Ma denotes the Mach number com-

puted by the ratio of the characteristic velocity

uch over the speed of sound c.

• Dispersion: Numerical discretization in space

and time converts the original non-dispersive

system into a dispersive discretized one. As

such, this error has to be kept as small as

possible by the numerical schemes, in which

both the amplitude and phase of the wave are of

crucial importance.

• Simulation of unbounded domains: A main is-

sue for the simulation of unbounded domains

using volume discretization methods remains

the boundary treatment, which needs to be ap-

plied to avoid reflections of outgoing vortical

structures as well as reflections of waves at the

boundary of the computational domain.

In general, aeroacoustic formulations may be cat-

egorized as follows: (1) direct numerical simula-

tions resolving all vortical and acoustic scales; (2)

aeroacoustic analogies; (3) perturbation equations

based on systematic decomposition of physical field

properties. In this contribution, the focus is on

aeroacoustic analogies and perturbation equations.

Direct numerical simulations by solving the full set

of compressible flow equations and resolving both

vortical and wave components become more and

more attractive, due to the increase of computer re-

sources [5, 6, 7, 8]. Still, the application to industrial

relevant problems is limited.

2. PHYSICAL MODELING

2.1. Lighthill’s analogy and extensions

Lighthill transformed the general equations of

mass and momentum conservation to an exact in-

homogeneous wave equation whose source terms are

important only within the turbulent region [9]. In do-

ing so, the in-homogeneous wave equation was de-

rived
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c2
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∂2

∂t2
− ∂2

∂x2
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c2
0(ρ − ρ0) =

∂2Ti j

∂xi∂x j

. (2)

It has to be noted that (ρ − ρ0) = ρ′ is a fluctuating

density not being equal to the acoustic density ρa, but

a superposition of flow and acoustic parts within flow

regions. Far away form the flow, the fluctuating dens-

ity ρ′ approaches the acoustic density ρa. Further-

more, the right hand side of (2) contains the Lighthill

stress tensor, and computes by

Ti j = ρuiu j +
(

(p − p0) − c2
0(ρ − ρ0)

)

δi j − τi j . (3)

In Eqs. (2) and (3) ρ denotes the total density, ρ0 the

ambient density, c0 the mean speed of sound, p the

total pressure, p0 the ambient pressure, u the total

velocity, δ the Kronecker delta and τi j the compon-

ents of the viscous stress tensor. In the definition

of the Lighthill tensor according to Eq. (3) the term

ρuiu j are called the Reynolds stresses. The second

term
(

(p − p0) − c2
0
(ρ − ρ0)

)

δi j represents the excess

of moment transfer by the pressure over that in the

ideal fluid of density ρ0 and speed of sound c0. This

is produced by wave amplitude nonlinearity, and by

mean density variations in the source flow. The vis-

cous stress tensor τi j properly accounts for the atten-

uation of the sound. Please note that the terms in Ti j

not only account for the generation of sound, but also

includes acoustic self modulation caused by

• acoustic nonlinearity,

• the convection of sound waves by the flow velo-

city,

• refraction caused by sound speed variations,

• and attenuation due to thermal and viscous ac-

tions.

The influence of acoustic nonlinearity and thermo-

viscous dissipation is usually sufficiently small to be

neglected within the source region. Convection and

refraction of sound within the flow region can be im-

portant, e.g., in the presence of a mean shear layer

(when the Reynolds stress will include terms like

ρu0iu
′
j
, where u

0
and u′ respectively denote the mean

and fluctuating components of u). Such effects are

described by the presence of unsteady linear terms

in Ti j. Furthermore, since for practical applications,

Ti j is obtained by numerically solving the full set of

compressible flow equations, the question of how ac-

curate these terms are resolved, is always present.

In summary, Lighthill’s inhomogeneous wave

equation equipped with appropriate boundary condi-

tions (e.g., sound hard at solid walls) correctly mod-

els all physical flow-acoustic effects. However, the

whole set of compressible flow dynamics equations

has to be solved in order to be able to calculate Light-

hill’s tensor. This means that both the flow structures

and acoustic waves have to be resolved, which is an

enormous challenge for any numerical scheme and

the computational noise itself may strongly disturb

the physical radiating wave components [10]. There-

fore, in the theories of Phillips and Lilley interaction

effects have been, at least to some extent, moved to

the wave operator [11, 12]. These equations predict
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certain aspects of the sound field surrounding a jet

quite accurately, which are not accounted in Light-

hill’s equation due to the restricted numerical res-

olution of Ti j [13]. Please note that Lighthill was

initially interested in solving the problem illustrated

in Fig. 1a, of the sound produced by a turbulent

nozzle flow. However, at this time a volume discret-

sound

turbulent nozzle flow

u

(a) Turbulent nozzle flow.

sound

(b) Isolated turbulent region.

Figure 1. Sound generation by turbulent flows.

ization by numerical schemes was not feasible and so

a transformation of the inhomogeneous wave equa-

tion into an integral representation was performed by

Green’s function of free radiation, resulting in

c2
0ρ
′(x, t) =

1

4π

∂2

∂xi∂x j

∞
∫

−∞

Ti j(y, t − |x − y|/c0)

|x − y| dy .

(4)

Thereby, y defines the source coordinate and x the

coordinate at which the acoustic density fluctuation

is computed. Therefore, Lighthill’s integral formu-

lation just applies to the simple situation as given in

Fig. 1b. This avoids complications caused by the

presence of the nozzle. Curle investigated the effects

of surfaces at rest on the integral solution in terms

of Green’s function on Lighthill’s theory [14]. The

extension uses the known facts of distribution theory,

and the formulation reads as

c2
0ρ
′ H( f ) =

∂2

∂xi∂x j

∫

Ω

〈

Ti j

〉

4π|x − y| dy (5)

− ∂

∂xi

∮

Γs

〈

(p − p0)δi j − τi j

〉

4π|x − y| ds j(y) ,

where < ⋆ > denotes the evaluation of the term at

retarted time and H( f ) the Heaviside function of f

describing the solid (scatterer) surface Γs by

f (x) =



















0 for x on Γs

< 0 for x within the surface

> 0 for x in Ω
. (6)

Ffowcs Williams and Hawkings [15] generalized

Curle’s integral representation towards accounting

for the effects of arbitrary moving bodies in the

source domain, extending Kirchhoff’s formula de-

rived in [16]. The aeroacoustic analogy of Ffowcs

Williams and Hawkings[15] is probably one of the

most used analogies for free radiation today[17, 18].

However, the integral solution has the restriction that

the integration surface must surround all reflection

walls and the mean flow field must be constant or

zero. The surface may be a physical boundary of

a solid or a transparent surface that encloses a fluid

body.

For practical applications of Lighthill’s analogy,

it would be quite beneficial to know the leading or-

der term of Lighthill’s tensor. This analysis has been

done in [19] for low Mach number flows in an isen-

tropic medium by applying the method of matched

asymptotic expansion (see, e.g., [10]). Sound emis-

sion from an eddy region involves three length scales:

the eddy size l, the wavelength λ of the sound, and a

dimension L of the region. The problem is solved for

Ma ≪ 1 and L/l ∼ 1 by matching the compressible

eddy core scaled by l to a surrounding acoustic field

scaled by λ. Thereby, Lighthill’s solution is shown

to be adequate in both regions, if Ti j is approximated

by

Ti j ≈ ρ0uic
i uic

j , (7)

with uic = ∇×ψ(ω) and vorticity ω = ∇×uic. Such a

flow field is described by solving the incompressible

flow dynamics equations. Thereby, an incompress-

ible flow velocity uic and pressure pic are obtained.

For an incompressible flow, the divergence of uic is

zero, which allows to rewrite the second spatial de-

rivative of Eq. (7) by

∂2

∂xix j

(

ρ0uic
i uic

j

)

= ρ0

∂uic
j

∂xi

∂uic
i

∂x j

. (8)

Furthermore, applying the divergence to the conser-

vation of momentum and neglecting viscous stresses

provides the following equivalence

∂2 pic

∂x2
i

= −ρ0

∂2uic
i

uic
j

∂xi∂x j

. (9)

In doing so, the flow is totally separated from the

acoustic field, which also means that any influence

of the acoustic field on the flow field is neglected.

Such an approach belongs to hybrid schemes sep-

arating the flow from the acoustic computations [4].

Thereby, an optimal computational grid can be used

for each individual physical field achieving highest

accuracy. As a result, the two grids may be quite

different according to the following criteria: (1)
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near walls, the flow grid needs refinement to re-

solve boundary layers; (2) the flow grid is mostly

coarsened towards outflow boundaries to dissipate

vortices; (3) the acoustic grid has to transport waves

and therefore needs an uniform grid size all over the

computational domain. Thereby, any feedback of the

acoustic field on the flow field can just be modeled,

when the compressible flow equations are solved to

resolve all vertical and wave structures.

2.2. Perturbation equations

The acoustic/viscous splitting technique for the

prediction of flow induced sound was first introduced

in [20], and afterwards many groups presented al-

ternative and improved formulations for linear and

nonlinear wave propagation [21, 22, 23, 24]. These

formulations are all based on the idea, that the flow

field quantities are split into compressible and incom-

pressible parts.

For the following derivation, a generic splitting

of physical quantities is applied to the conservation

equations

p = p̄ + pic + pc = p̄ + pic + pa (10)

u = ū + uic + uc = ū + uic + ua (11)

ρ = ρ0 + ρ1 + ρ
a . (12)

Thereby the field variables are split into mean and

fluctuating parts just like in the LEE (Linearized

Euler Equations). In addition the fluctuating field

variables are split into acoustic and non-acoustic

components. Finally, the density correction ρ1 is

build in as introduced above. This choice is motiv-

ated by the following assumptions

• The acoustic field is a fluctuating field.

• The acoustic field is irrotational, i.e. ∇×ua = 0.

• The acoustic field requires compressible me-

dia and an incompressible pressure fluctuation

is not equivalent to an acoustic pressure fluctu-

ation.

By doing so, the perturbation equations1 assuming an

incompressible flow are derived

∂pa

∂t
+ u · ∇pa + ρ0c2

0∇ · ua = −∂pic

∂t
− u · ∇pic

(13)

ρ0

∂ua

∂t
+ ρ0∇

(

u · ua) + ∇pa = 0 (14)

with spatial constant mean density ρ0 and speed of

sound c0. This system of partial differential equa-

tions is equivalent to the previously published ones

[22]. The source term is the substantial derivative

of the incompressible flow pressure pic. Using the

acoustic scalar potential ψa and assuming a spatial

1For a detailed derivation of perturbation equations both for

compressible as well as incompressible flows, see [25]

constant mean density ρ0 and speed of sound c0,

Eq. (14) may be rewritten by

∇
(

ρ0

∂ψa

∂t
+ ρ0 u · ∇ψa − pa

)

= 0 , (15)

resulting in

pa = ρ0

∂ψa

∂t
+ ρ0 u · ∇ψa . (16)

Now, substituting Eq. (16) into Eq. (13) leads to

1

c2
0

D2ψa

Dt2
−∆ψa = − 1

ρ0c2
0

Dpic

Dt
;

D

Dt
=
∂

∂t
+u · ∇ .

(17)

This convective wave equation fully describes acous-

tic sources generated by incompressible flow struc-

tures and its wave propagation through flowing me-

dia. In addition, instead of the original unknowns

pa and ua just the scalar unknown ψa has to be com-

puted. In accordance with the acoustic perturbation

equations (APE), this resulting wave equation for the

acoustic scalar potential has been named Perturbed

Convective Wave Equation (PCWE) [26, 27].

Finally, it is of great interest that by neglecting

the mean flow ū in Eqs. (13) and (14), one arrives

at the linearized conservation equations of acoustics

with ∂pic/∂t as a source term

1

ρ0c2
0

∂pa

∂t
+ ∇ · ua =

−1

ρ0c2
0

∂pic

∂t
(18)

∂ua

∂t
+

1

ρ0

∇pa = 0 . (19)

Again using the scalar potential ψa, one arrives at

1

c2
0

∂2ψa

∂t2
− ∇ · ∇ψa =

−1

ρ0c2
0

∂pic

∂t
. (20)

Furthermore, as done in the standard acoustic case,

one may apply ∂/∂t to (18) and ∇· to (19) and sub-

tract the two resulting equations to arrive at

1

c2
0

∂2 pa

∂t2
− ∇ · ∇pa =

−1

c2
0

∂2 pic

∂t2
. (21)

Please note, that this equation can also be obtained

by starting at Lighthill’s inhomogeneous wave equa-

tion for incompressible flow, where the second spa-

tial derivative of Lighthill’s tensor is substituted by

the Laplacian of the incompressible flow pressure

(see (9)). Using the decomposition of the fluctuat-

ing pressure

p′ = pic + pa ,

results again into (21). It has to be mentioned that

Eq. (21) was originally derived by a different ap-

proach in [28], and is known as Ribner’s dilatation

equation.
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2.3. Towards general aeroacoustics

A general aeroacoustic formulation composes a

hyperbolic left hand side defined by a wave operator

� and a generic right hand side RHS (⋆) [29]

�p′ = RHS (p, u, ρ, ...) . (22)

To this end, Lighthill’s inhomogeneous wave equa-

tion perfectly fits to this class. It is obvious that the

right hand side RHS (⋆) of Lighthill’s inhomogen-

eous wave equation contains not only source terms,

but also nonlinear and interaction terms between the

sound and flow field, which includes effects such as

convection and refraction of the sound by the flow

(see Sec. 2.1).

In 2003, Goldstein proposed a method to split

flow variables (p, u, ...) into a base flow (non-

radiating) and a remaining component (acoustic, ra-

diating fluctuations) [30]

⋆ = ⋆̃ + ⋆′ . (23)

Applying the decomposition to the right hand side of

the wave equation (the left hand side of the equation

is already treated in this manner during the derivation

of the acoustic equation) leads to

�p′ = RHS ( p̃, ũ, ρ̃, p′, u′, ρ′, ...) . (24)

Now, interaction terms can be moved to the differen-

tial operator to take, e.g., convection and refraction

effects into account, and even nonlinear interactions

can be considered. Therefore, three steps to relax the

Mach number constraint imposed by the incompress-

ible flow simulation are proposed:

1. Perform a compressible flow simulation, which

incorporates two-way coupling of flow and

acoustics.

2. Filtering of the flow field, such that one obtains

a pure non-radiating field from which the acous-

tic sources are computed.

3. Solve with an appropriate wave operator for the

radiating field

�p′ = RHS (p̃, ṽ, ρ̃, ...) . (25)

Naturally, the incompressibility condition (re-

garding the concept of a non-radiating base flow of

Goldstein) leads to the Helmholtz decomposition of

the flow field. An additive splitting on the bounded

problem domain Ω of the velocity field u ∈ L2(Ω) in

L2-orthogonal velocity components reads as [31]

u = uic + uc + uh = ∇ × Aic + ∇φc + uh , (26)

where uic represents the solenoidal (non-radiating

base flow) part, uc the irrotational (radiating) part and

uh the harmonic (divergence-free and curl-free) part

of the flow velocity. The scalar potential φc is as-

sociated with the compressible part and the property

∇×uc = 0, whereas the vector potential Aic describes

the solenoidal (vortical) part of the velocity field, sat-

isfying ∇ · uic = 0.

Based on the decomposition Eq. (26), the actual

computation of the additive velocity components for

a bounded domain is formulated, where the total flow

field u and its derivatives do not decay towards or

vanish at the boundaries of the decomposition do-

main. Thus, one has to include the harmonic part

uh of the decomposition, which physically speaking

is the potential flow solution of the configuration.

Thereby, a domain as depicted in Fig. 2 is con-

Flow, ΩF

Propagation,

ΩP

Γ1

Γ2

Γ3

Γ4

Figure 2. The flow domain ΩF is a subdomain of

the acoustic domain ΩA, which includes the flow

domain as its source domain and the propagation

domain ΩP.

sidered, with the flow boundaries Γ1,...,4. Applying

the curl to Eq. (26), the vector valued curl-curl equa-

tion with the vorticityω = ∇×u as forcing is obtained

∇ × ∇ × A∗,ic = ∇ × u = ω . (27)

The star denotes the joint function of both parts, the

incompressible and the harmonic one. The function

spaceW for the vector potential

W = {ϕ ∈ H(curl,Ω)|n×∇×ϕ = n×u on Γ1,2,3,4}

requires a finite element discretization with edge ele-

ments (Nédélec elements) [32]. Due to the spaceW
and the orthogonality condition, the decomposition

fulfills along the boundary
∫

Γ

A∗,ic · (uc × n)ds = 0 , (28)

ensuring the orthogonality of the components and

an unique decomposition. Finally, the non-radiating

component, which contains all divergence-free com-

ponents, computes by

ũ := u∗,ic = ∇ × A∗,ic = ∇ × Aic . (29)

For the computation of the wave propagation, the

equation of vortex sound [33] based on the total en-

thalpy

H =

∫

dp

ρ
+

u2

2
(30)

as primary variable, with u2 = u · u, is applied. The

acoustic analogy for homentropic flow reads as

1

c2

D2

Dt2
H − ∇ · ∇H = ∇ ·

(

ω × ũ
)

= ∇ · L(ũ) . (31)
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The wave operator is of convective type, where the

total derivative is defined as

D⋆

Dt
=
∂⋆

∂t
+ (u · ∇) ⋆ . (32)

The aeroacoustic source term is known as the diver-

gence of the Lamb vector L

L(u) =
(

ω × ũ
)

. (33)

3. BENCHMARKS

In the following, three benchmark case are dis-

cussed, which are already established or become a

standard in the near future to test aeroacoustic for-

mulations.

3.1. Vortex Pair

The rotating vortex pair has been frequently used

to determine the capabilities of aeroacoustic meth-

odologies [34, 35, 36]. This arrangement has the

nature of a quadrupolar sound field. Figure 3 illus-

trates the configuration of the vortex pair. Both vor-

e
1
, x1

e
2
, x2

u
θ

u
θ

r0

Γ

Γ

ωrt

Figure 3. Schematic of the co-rotating vortex pair

defining the main geometrical and physical char-

acteristics.

tices are delta distributions and oppose each other

at a distance of 2r0. The strength of each vortex

is characterized by the circulation intensity Γ. The

vortices rotate around the origin with a period of

T = 8π2r2
0
/Γ imposing an angular rotating speed

ω
r
= Γ/(4πr2

0
) e

3
= ωr e

3
. Each vortex convects the

other vortex by a velocity of u
θ
= Γ/(4πr0) e

t
, where

e
t
is the unit vector in tangential direction. The Mach

number in the circumferential direction is given by

Mθ = uθ/c = Γ/(4πr0c). The potential flow the-

ory can be used to determine the fundamental solu-

tion of the spinning vortex pair in terms of the com-

plex flow potential function. In doing so, one intro-

duces the transformation from Cartesian coordinates

(x1, x2) to the complex plane with the complex co-

ordinate z = r expiθ = x1 + ix2. The location of

each vortex over time t is defined by b = r0 expiωt.

Using these definitions, the incompressible, inviscid

flow potential ϕ(z, t) computes by

ϕ(z, t) =
Γ

2πi
ln(z−b)+

Γ

2πi
ln(z+b) =

Γ

2πi
ln(z2−b2) .

(34)

The incompressible velocity field uic = (u1, u2)T of

the spinning vortex pair is obtained by differentiating

Eq. (34) with respect to the complex coordinate z

u1 − iu2 =
∂ϕ(z, t)

∂z
=
Γ

πi

z

z2 − b2
. (35)

The incompressible fluid dynamic pressure pic is ob-

tained by applying the unsteady form of Bernoulli’s

principle

pic = p0 − ρ0

∂Re{ϕ(z, t)}
∂t

− 1

2
ρ0(u2

1 + u2
2) . (36)

Müller and Obermeier [37] derived an analytic solu-

tion of the acoustic far-field, based on matched

asymptotic expansion of the potential solution. Start-

ing from the solution in form of a complex potential

Eq. (34), matching the inner and the outer solution

yields the pressure fluctuation p′ of the co-rotating

vortex pair

p′ =
ρ0Γ

4

64π3r4
0
c2

(

J2(2kr) cos(2ωt)−Y2(2kr) sin(2ωt)
)

.

(37)

In Eq. (37) k = ω/c denotes the wave number, J2(⋆)

the second-order Bessel function of first kind and

Y2(⋆) the second kind. It should be emphasized that

this fluctuating pressure p′ is not equal to the acoustic

pressure pa; however, p′ → pa holds in the far-field.

In doing so, the co-rotating vortex pair on a sta-

tionary grid with moving sources induced by the

vortical structures are simulated. An unstructured

mesh is used to discretize the computational domain.

In the source region, a characteristic mesh size of

h ≈ 90 cm is used. Each vortex distribution Γδ(z − b)

is approximated by a continuous multivariant normal

distribution with equivalent circulation Γ and an iso-

tropic variance of σ2 = 0.05 m2.

The analytic field is represented on the flow grid

and is based on a circulation strength of Γ = 2πm2/s

and a distance of 2r0 = 2 m between the vortices.

The angular rotation induced by the vortices is ωr =

0.5 s−1, the speed of sound c =
√

10 m/s and dens-

ity ρ0 = 1 kg/m3. Using this flow field, the source

term computation is performed and finally the sound,

which is compared to the analytic solution in the

far-field (see Eq. (37)), is computed. The first sim-

ulation is based on vortex sound equation accord-

ing to Eq. (31), and the second computation uses

the perturbed convective wave equation (PCWE) as

presented in Sec. 2.2. Based on the computational

methodology of radial basis functions, the follow-

ing simulation workflow for the computation of the

aeroacoustic source terms is performed. First, the in-

compressible pressure pic, flow velocity uic, and vor-
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ticity ω are computed. Second, if required, derivat-

ives are computed by the radial basis function frame-

work [38]. As a third step, a conservative interpol-

ation to a much coarser mesh for the acoustic com-

putation is performed [39]. The computational do-

−50 0 50

Fluctuating pressure p′(t) (µPa)

Figure 4. Simulation result solving Eq. (31) with

the Lamb vector as source term.

−50 0 50

Acoustic pressure pa(t) (µPa)

Figure 5. Simulation result solving Eq. (17) with

the substantial derivative of the incompressible

pressure as source term.

main of (260 x260) m2 for the two wave equations is

decomposed into three subdomains. The source do-

main has a diameter of 5r0 (relatively high resolved

unstructured triangular mesh, h ≈ 90 cm) is embed-

ded in a propagation region, in which gradually the

unstructured mesh size is increased. The propaga-

tion region is surrounded by a structured perfectly

matched layer (PML) region [40], which absorbs the

radiating waves. The wave length λ = 2π
k
≈ 20 m is

resolved (in the propagation region) with approxim-

ately 20 linear finite elements per wavelength. For

both acoustic simulations, a Newmark scheme with

a time step size of ∆t = 0.09 s is applied for the time

discretization.

Figure 4 shows the fluctuating pressure field

of the co-rotating vortex pair obtained by solving

Eq. (31). The acoustic field obtained by solving

Eq. (17) is displayed in Fig. 5. In the acoustic near-

field, differences occur due to the different solution

quantities in the two aeroacoustic formulations. Both

results have the characteristic radiation pattern of the

co-rotating vortex pair.
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p
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p
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Analytic solution

Vortex sound with coarse source distretization

Vortex sound with fine source distretization

PCWE with coarse source distretization

Figure 6. Fluctuating pressure p′ and acoustic

pressure pa, respectively, as a function of the co-

ordinate x1.

The steepest descent of the Gaussian distribution

is discretized by 5 linear triangular elements over 2σ.

This coarse approximation of the vortical distribution

shows the robustness of the radial basis function de-

rivatives. A mesh refinement of the source region

(see Fig. 6) causes no significant increase in accur-

acy compared to the analytic solution. As depicted

in Fig. 6, one can clearly see the good accordance of

numerical and analytic solution, even for the coarse

grid.
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3.2. Axial Fan

(a) Axial fan. (b) Pressure sensors K1 to

K6.

Figure 7. Axial fan and position of the pressure

sensors.

The investigated axial fan is displayed in Fig. 7

consisting of nine fan blades with a tip diameter of

495 mm. It was installed inside a duct with a dia-

meter of 500 mm, hence the tip gap was 2.5 mm. The

fan was embedded in a sound hard tube and all meas-

urements were performed in a standardized inlet test

chamber according to ISO 5801. The test chamber

has been built as an anechoic chamber with absorbing

walls, ceiling, and floor, to enable aeroacoustic meas-

urements. The rotational speed of the fan was about

1500 rpm, which results in a maximum tip speed of

38.89 m/s. The fan was installed in a short duct with

a bellmouth on the in- and outlet to resemble a real-

istic test setup. The fan was driven by a motor inside

the duct. Torque and rotational speed were meas-

ured with a precision torque meter. To ensure that

torque measurements are not compromised by fric-

tional torque of the bearings, an offset measurement

was performed with the fan being removed. All de-

tails towards the measurements can be found in [41].

For the numerical computation of the flow field,

OpenFOAM Toolbox version 2.3.0 has been used

to solve the incompressible Navier-Stokes equations

based on the finite-volume method and the arbit-

rary mesh interface (AMI). The AMI allows sim-

ulation across disconnected, but adjacent mesh do-

mains, which are especially required for rotating geo-

metries. The computational domain is displayed in

Fig. 8a including the axial fan inside the pipe, the

inlet chamber, and the outlet region. The flow solu-

(a) Computational domain for

flow computation.

(b) Microphone posi-

tions.

Figure 8. Computational domain for flow compu-

tation and position of the microphones.

tion is computed using an adapted version of the

pimpleDyMFoam solver, which can handle dynamic

meshes, with a time step size of ∆t = 10 µs. For

the CFD computation, a hexahedron-dominant finite

volume mesh consisting of 29.8 million cells was

generated with the automatic mesh generator HEX-

PRESSTM / Hybrid from Numeca, as displayed in

Fig. 9a. The transient simulation was carried out

by using a detached-eddy simulation based on the

Spalart-Allmaras turbulence model to accurately re-

solve the complex flow field. The applied finite-

volume scheme has been second order in space and

time, and the convective term has been discretized by

a bounded central upwind scheme. In total, the CFD

(a) Computational grid. (b) Flow structure.

Figure 9. Cross section through the computa-

tional mesh for CFD and flow structure for a char-

acteristic time step.

computation has been performed for 10 revolutions.

After about 6 revolutions, the flow field achieved

steady-state and the CFD data of the remaining 4

revolutions have been used for acoustic source and

wave propagation computations. Figure 9b displays

the flow structure for a characteristic time step.

To validate the flow computation, wall pressure

fluctuations were measured with 6 differential mini-

ature pressure transducers XCS-093-1psi D (Kulite

Semiconductor Products) with a diameter of 2.5 mm

(see Fig. 7b). The sensors were flush mounted and

equally spaced along a line on the duct. Exemplary,

(a) Position 2

(b) Position 4

Figure 10. Spectral density (relative to 20µPa) of

the measured instationary pressures at position

K2 and K4.

the spectral density (PSD) of the instationary pres-

sure in Fig. 10 at position K2 and K4 is displayed (for
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positions see Fig. 7b). Here, it should be emphasized

that especially a good comparison between meas-

ured and simulated pressure spectra is of high relev-

ance since the instationary pressure is a key physical

quantity within aeroacoustic computations.

In accordance to the flow computation, the rotat-

ing domain is embedded into a quiescent propagation

region for performing the acoustic simulations (see

Fig. 11) [27]. Furthermore, at the inflow and out-

flow boundaries of the CFD domain two additional

regions as PML are added to effectively approxim-

ate acoustic free field conditions [40]. To resolve

(a) Computational setup (b) Detail of mesh

Figure 11. Computational domain for the acoustic

calculation and detail of acoustic mesh near the

rotor.

accurately the rotor geometry, tetrahedron elements

are used as displayed in Fig. 11b. As soon as the

inlet as well as the outlet are reached, hexahedron

elements are used and the two meshes are coupled

by a Nitsche-type mortaring approach. The computa-

tional mesh resulted in approximately 2 million cells,

which is by a factor of 15 smaller than the flow grid.

Thereby, the spatial resolution of the mesh has been

chosen to resolve acoustic waves up to 5 kHz (about

ten finite elements with linear basis functions per

wavelength), which was the main frequency range of

interest. The used time-stepping scheme with con-

trolled dispersion (Hilber-Hughes-Taylor) numeric-

ally damps waves of higher frequency to avoid nu-

merical artifacts. Therefore, the computed acoustic

spectra will strongly decrease above 5 kHz (see Figs.

12a and 12b). The mesh convergence has been stud-

ied by placing artificial sources on the rotor blades.

The computation of the acoustic sources on the flow

grid are interpolated to the acoustic grid via a cut-

volume-cell approach [42, 43].

The sound field was measured with four 1/2 inch

free-field microphones, type 4189-L-001 (Brüel &

Kjaer) arranged in a quarter-circle with a radius of

1 m around the inlet bellmouth in a horizontal plane

at the same height as the rotational axis, see Fig. 8b.

Thereby, the measurements were made synchron-

ized with the wall pressure fluctuations. Accord-

ingly, measurement time was 30 s with a sampling

frequency of 48 kHz. Figures 12 display the com-

puted power spectral density of the acoustic pressure

at the two microphone positions (for location see Fig.

8b). Thereby, the smoothed measured spectra ob-

tained from the 30 s recorded acoustic pressure sig-

nals as well as the individual spectra by just using

measured data of 0.1 s (in gray) are displayed. The

computed spectra based on the numerical simulations

using openCFS [44] are calculated out of a real-time

simulation of 0.06 s. Further details on the numerical

f (Hz)

P
S

D
 (

d
B

)

Measurement (0.1s)

Measurement (30s)

openCFS (0.06s)

(a) Position M1

f (Hz)
P

S
D

 (
d

B
)

Measurement (0.1s)

Measurement (30s)

openCFS (0.06s)

(b) Position M4

Figure 12. Spectral density (relative to 20µPa) of

the measured microphone signals at position M1

and M4.

computations can be found in [42].

3.3. Cavity with a lip

This benchmark case by [45] considers a flow

- acoustic feedback mechanism. The geometrical

properties are given in Fig. 13, with all spatial di-

mensions in mm. The deep cavity has a reduced

U∞ = 50m/s

δ= 10

8.7

2
4
.7

3
.3

15.9Measurement: Pressure C1

Figure 13. The geometry and the flow configura-

tion of the benchmark problem, cavity with a lip.

cross-section at the orifice and the cavity separates

two flat plate configurations. The flow, with a free-

stream velocity of U∞ = 50 m/s, develops over the

plate up to a boundary layer thickness of δ = 10 mm.

For this configuration the first shear layer mode is

expected at about fs1 = 1.7 kHz.

The unsteady, compressible, and laminar flow

simulation is performed with a prescribed velocity

profile u = u
in

at the inlet Γ1, a no slip and no pen-

etration condition u = 0 for the wall Γ2, an enforced
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reference pressure p = pref at the outlet Γ3, and a

symmetry condition u · n = 0 at the top Γ4 (see Fig.

2). Thereby, the commercial CFD software Ansys-

Fluent has been used. The compressible flow simu-

lation demonstrates the presence of standing waves

due to the boundary conditions of the compressible

flow simulation as displayed in Fig. 14. This shows

−50 0 50

Rate of expansion ∇ · u (1/s)

Figure 14. The rate of expansion ∇ · u of the com-

pressible flow simulation at a representative time

step.

how important it is to model boundaries with respect

to the physical phenomena.

For each time step of the compressible flow com-

putation, Eq. (27) is solved with the appropriate

boundary conditions

n × ∇ × A∗,ic = n × u on Γ1,2,3,4

to obtain the pure vortical velocity field according

to Eq. (29) (see Fig. 15). This method tackles the

0 50

‖ u
∗,ic ‖ (m/s)

Figure 15. The magnitude of the incompressible

component of the flow velocity captures the vor-

tical flow features of the simulation.

compressible phenomena inside the domain ΩF by

filtering the domain artifacts of the compressible flow

field such that the computed sources are not corrup-

ted. Figure 16 illustrates the shape and nature of the

Lamb vector (Fourier-transformed) at the first shear

layer mode, where the difference between the correc-

ted and non-corrected Lamb vector gets visible.

(a) x− component of Lamb vector

(b) y− component of Lamb vector

(c) x− component of corrected Lamb vec-

tor

(d) y− component of corrected Lamb vec-

tor

Figure 16. Comparison of the Lamb vector for

the corrected and the non-corrected calculation at

the first shear layer mode.

The acoustic simulations utilizes the equation

of vortex sound Eq. (31) to compute the acoustic

propagation applying the finite element method by

using the in-house solver openCFS [44]. Two differ-

ent aeroacoustic source variants are investigated, the

uncorrected Lamb vector L(u) (field quantities dir-

ectly from the compressible flow simulation) and the

corrected Lamb vector L(ũ) based on the Helmholtz

decomposition in the vector potential formulation.

Figure 17 compares the resulting acoustic fields. As

expected, the acoustic field computed by the correc-

ted source term is strongly reduced in amplitude and

shows a typically wave propagation, whereas Fig.

17a shows perturbations.
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(a) L(u) = ω × u, not corrected

(b) L(ũ) = ω × ũ, corrected

Figure 17. Field of the total enthalpy fluctuation

H at a characteristic time.

The ideal gas law and Eq. (30) serves us a rela-

tion between the specific enthalpy H and the sound

pressure pa. In its linearized form, the sound pres-

sure level (SPL) computes by

S PL = 20 log

(

ρ0 H

pa,ref

)

(38)

with pa
ref

being 20 µPa. Table 1 quantifies the ob-

tained results for the first shear layer mode in the far

field, where the computed 2D acoustic sound pres-

sure has been scaled according to [46] for compar-

ison with the measured data. Thereby, the compu-

tations of the non-corrected source terms overestim-

ate the experimental result by 22 dB. In the case of

the corrected source terms, the overestimation is just

4 dB.

Table 1. Comparison of the pressure outside the

cavity

fs1/Hz S PLs1/dB

Experiment 1650 30

Simulation

L(ũ) = ω × ũ

1660 34

Simulation

L(u) = ω × u

1660 52

4. SUMMARY

This article has discussed physical models and

numerical schemes for computational aeroacoustics.

In doing so, the main challenges for flow induced

sound both for low and high Mach number flows

have been highlighted. The discussed physical mod-

els concentrate on aeroacoustic analogies and per-

turbation equations based on systematic decompos-

ition of physical field properties. Although main

achievements have been obtained within the last

twenty years, aeroacoustics is still a topic of ongoing

research with many phenomena, which are partially

not fully understood or / and needs physical mod-

els and numerical computational schemes to support

their understanding.
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