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ABSTRACT 

A patient-specific simulation has been widely 

used not only for scientific study to elucidate 

mechanism between hemodynamics and 

cardiovascular diseases such as stroke but also for 

clinical applications to predict post-operative blood 

flow situation. Since carotid artery stenosis is a major 

cause of a stroke, patients with severe carotid artery 

stenosis often undergo revascularization surgery such 

as carotid artery stenting to prevent a stroke from 

happening in the future. However, some patients 

suffer from complications like cerebral hyperfusion 

syndrome (CHS), which leads to hemorrhage due to a 

sudden increase in a flow rate in the brain. Therefore, 

predicting the blood flow in the brain after the surgery 

is very important to determine the most suitable 

surgery for an individual patient to avoid 

complications like CHS after the surgery.  

The paper reviews the patient-specific simulation. 

In order to predict the post-operative flow in the brain 

after the surgery,  it is necessary to consider the entire 

circulatory system because the surgery affects the 

blood flow in the brain as well as in the entire 

circulatory system. Therefore, the authors have been 

developing a multi-scale blood flow simulation by 

combining 1D (One-dimensional) and 0D (Zero-

dimensional) models.  

The patient-specific simulation utilizes geometric 

and physiological parameters derived from clinical 

data for the region of interest, i.e. the circle of Wills 

(CoW) in this paper as well as the literature data for 

the rest of circulatory system. These data contain 

uncertainties, which affect the simulation results by 

propagating through mathematical models and the 

simulation. Thus, quantifying an impact of 

uncertainties in medical images on simulated 

quantities is an essential task to obtain reliable results. 

In general, uncertainty quantification requires a large 

number of case studies to investigate the effects of 

uncertainties in a probabilistic manner. Thus, a 

surrogate model based on a machine learning 

technique was developed and applied to three patients 

for investigation of CHS risk after the surgery. 

Keywords: patient-specific simulation, multi-

simulation, 1D-0D models, quantification of 

uncertainties, machine learning, cerebral 

circulation 

1. INTRODUCTION 

Stroke is the second cause of death in the world [1]. 

It is not only fatal because of high mortality rate but 

also low quality of life in case of severe complications 

such as parallelization or impaired consciousness. 

There are two types of strokes: ischemic and 

hemorrhage strokes. The ischemic strokes are mainly 

caused by severe arterial stenosis, which is resulted 

from progression of atherosclerosis. The arterial 

stenosis is a serious cardiovascular disease-causing 

large pressure drop and an abrupt decrease in a flow 

rate. If stenosis becomes highly sever, a surgery such 

as carotid artery stenting (CAS) or carotid 

endarterectomy (CAE) is performed to prevent those 

fatal situations[2,3]. However, the surgery sometimes 

causes the postoperative syndrome such as 

intracranial hemorrhage caused by cerebral hyper 

fusion (CHS) [4] . Thus, it is important to examine the 

effects of surgery on a patient and to understand 

changes in the distributions of blood flow and 

pressure after the surgery. 

The patient-specific modeling and numerical 

simulations have been widely applied to investigate 

the hemodynamics for an individual patient [5, 6]. In 

this method, the simulation is performed in the three-

dimension for the patient’s vasuclar geometry, which 

is constructed from the medical images such as 

computed tomography (CT) or magnetic resonance 

imaging (MRI). It can provide the detailed 

hemodynamic information but limited only to the 

region of interest due to resolution of the medical 

images. The surgery influences hemodynamics not 

only in a localized region around the stenotic region, 
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in which medical images are available but also 

throughout the peripheral areas to the entire 

circulatory system. The objective of the paper is to 

develop a simulation system to examine the 

hemodynamics locally as well as globally in the 

circulatory system. Thus, a multi-scale approach has 

been developed to consider the effects of peripheral 

vascular network as well as  the entire circulatory 

system using combined reduce models of one-

dimension (1D) and zero-dimension (0D) [7-9]. The 

1D-0D simulation is an appropriate method to capture 

primary hemodynamics information such as flow rate 

or pressure with less computing time and better 

portability comparing to three-dimensional (3D) 

simulation. 

The Patient-specific blood flow simulation is 

performed by applying vascular geometry and 

velocity information from medical images of an 

individual patient to obtain hemodynamic factors 

such as blood flow velocity, pressure, and wall shear 

stresses, which are important indicators for 

cardiovascular diseases. The pipeline of the patient-

specific simulation system consists of three steps: 1) 

vascular geometric modeling, 2) multi-scale blood 

simulation using multi-modal data of medical images, 

and 3) visualization of simulation results as illustrated 

in Figre1[8]. 

 

 
Figure1. Schematic illustration of patient-specific 

simulation 

 

In the first step for vascular geometric 

modeling, the 3D vascular geometry is constructed 

from either CT or MRI. The information on the radius 

and the length of artery can be obtained as well as the 

vascular parameter such curvature and torsion from 

the 3D vascular geometry data and it is applied to a 

part of 1D domain in order to perform the patient-

specific 1D-0D simulation. In the second step for 

multi-scale blood simulation using multi-modal data 

of medical images, the simulation can be conducted 

in either 1D-0D or 3D-1D-0D depending on how 

detail the hemodynamic information is required. 

Since the 1D-0D simulation is carried out with 

consideration of the entire  circulatory system 

incorporating the patient-specific geometry 

constructed from the medical images, it is quite 

effective to examine the influences of surgery for each 

patient. In the last step for visualization, it is 

important to present the simulation results in an 

effective way for better understanding of 

hemodynamics or for an appropriate diagnosis to 

provide a suitable surgical planning. However,  the 

current visualization tools are generally available for 

the 3D simulations but not for the 1D-0D simulation. 

Therefore, the authors have been developing a 

visualization system for the 1D domain where the 

patient-specific geometry is applied.  

The present simulation system was applied to 

investigate the blood flow in the Circle of Willis 

(CoW), which is a vital region of cerebrovascular 

circulation. The paper presents each process in the 

pipeline of patient-specific simulation using 1D-0D 

simulation with multimodal data of medical images. 

The results were compared between  pre- and post-

operative flows to examine the effects of 

revascularization surgery on cerebral circulation[8]. 

 Since the patient-specific simulation is 

generally carried out using patient data, the 

uncertainties in the data propagate throughout 

mathematical models as well as the simulation and 

affect the simulations results. Therefore, uncertainty 

quantification (UQ) is an important issue, 

particularly for clinical applications. In the paper,  

the UQ is performed using a machine-learning 

surrogate model based on the 1D-0D simulation of 

the cerebral circulation with consideration of the 

entire circulatory system to estimate the flow rates 

in the Circle of Willis (CoW) for prediction of  

CHS risk. The CHS occurs when the post-operative 

flow rate becomes larger than 100% of the pre-

operative one, in which the post-operative flow rate 

becomes twice the pre-operative one [4]. Thus, in 

this study, a difference in flow (Q) between 

before and after the surgery was predicted. Since 

the UQ requires a large size of simulations, a 

surrogate model has been developed using deep 

neural network (DNN) with the datasets obtained 

from the 1D-0D simulation.  The accuracy of 

surrogate model was investigated by varying 

hyperparameters and the number of training data. 

The present surrogate models were applied to three 

patients including one patient with high risk of 

CHS. The results showed that the surrogate model 

predicted probabilistic distribution of Q in each 

artery of CoW with drastic reduction in computer 

time from twenty- minutes of 1D-0D simulation to 

milliseconds.  

2. VASUCULAR GEOMETRIC MODELING 

The vascular geometric modelling plays an 

important role in the patient-specific simulations. The 

authors have been developing a vascular geometric 

modelling system, V-Modeler [10,11]. The vascular 

geometry is extracted from the medical images of 

DICOM data format  such as CT or MRA. V-Modeler 

conducts the modeling procedure according to the 
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five processes: (I) segmentation of arterial lumen, (II) 

extraction of luminal centerlines, (III) reconstruction 

of surfaces, (IV) calculation of geometrical 

parameters, and (V) registration and tracking of 

centerlines and surfaces. If there are series of medical 

images in time, the temporal changes in geometry can 

be captured in a parametric manner. 

The arterial lumen is segmented from each slice 

of medical images in process I. After the centerlines 

are extracted from the segmented regions in the 

process II, they are converted into spline functions. In 

the process III, the 3D surfaces of the lumen are 

constructed. The process IV provides the geometric 

parameters of the lumen and its centerlines such as the 

length of centerline, radius of the lumen on each cross 

section perpendicular to the centerlines. The 3D 

geometric parameters of curvatures and the torsions 

are also calculated along the centerlines. In the 

process V, registration is performed so as to 

determine a geometrical transformation by aligning 

corresponding points between two sets of the same 

modality of medical images.  

The development environment of V-Modeler is 

based on Visual Studio 2010 Professional (C++ 

programming language) on Windows 7 Professional 

64bit. The image processing libraries are MIST 

(Media Integration Standard Toolkit, Nagoya 

University, Japan) and OpenCV 2.2, visualization 

library is OpenGL. The GUI of V-Modeler is 

designed to perform each process interactively and 

user-friendly, and to visualize the results of CoW as 

described in Figure 2. The vascular geometry of 

Figure 2 was extracted from MRA of the patient, who 

was a 70 years old male with 73%(NASCET) stenosis 

on the left ICA( Internal Carotid Artery) and had CAS 

surgery for revascularization treatment. 

 

 
Figure2. The circle of Willis constructed from 

MRA using V-modeler 

 

In order to derive a smooth centerline against 

noises intrinsic to the medical images for calculation 

for curvature and torsion, the authors developed a new 

penalized SFM, “geo-SFM”. The present method 

enables us to optimize geometrical parameters such as 

curvature and torsion along arterial centerlines 

extracted from medical images using  a penalty term 

with a higher-order degree of spline as well as Akaike 

indices to determine the unknown coefficients 

associated with penalty terms.  

For a B-spline curve and its derivatives, let 

   zyxt ,,P  be a position vector along a curve as 

a function of a parameter t as follows: 

 

𝑷(𝑡) = ∑ 𝐵𝑖,𝑘(𝑡)𝒙𝑖
𝑛
𝑖=1 , (1) 

 

where  tB ki,
 is the i-th normalized B-spline 

function of order k (degree k-1), and xi=(xi, yi, zi) is 

the position vector of the n control polygon vertices. 

 tB ki,
 is defined by the Cox-de Boor recursion 

formulas,  

 

𝑩𝒊,𝟏(𝒕) = {
𝟏 𝒕𝒊 ≤ 𝒕 < 𝒕𝒊+𝟏

𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 

 

𝑩𝒊,𝒌(𝒕) =
(𝒕−𝒕𝒊)𝑩𝒊,𝒌−𝟏(𝒕)

𝒌−𝟏
+

(𝒕𝒊+𝒌−𝒕)𝑩𝒊+𝟏,𝒌−𝟏(𝒕)

𝒌−𝟏
. (2) 

 

The N-th derivative of the B-spline curve 

 ( )N tP  with t is obtained from the N-th derivative of 

the B-spline function,  ( )

,

N

i kB t . 

 

𝑷(𝑵)(𝒕) = ∑ 𝑩𝒊,𝒌
(𝑵)(𝒕)𝒙𝒊

𝒏
𝒊=𝟏  (3) 

 

The geometric parameters on the spline curve, 

such as curvature   and torsion  , are given  

respectively by 

 

𝜿 =
𝟏

𝒔′𝟐
√(𝒙″)𝟐 + (𝒚″)𝟐 + (𝒛″)𝟐 

𝝉 =
𝟏

𝜿𝟐𝒔′𝟔 |

𝒙′ 𝒚′ 𝒛′

𝒙″ 𝒚″ 𝒛″

𝒙‴ 𝒚‴ 𝒛‴

|,  (4) 

 

where xx , , and x   are the 1st, 2nd, and 3rd 

derivative of x in terms of t, and ,,,,, zzyyy   and 

z    are as well. The variable s  is defined as,  

 

𝑠′ = √(𝑥 ′)2 + (𝑦′)2 + (𝑧 ′)2.                                   (5) 

 

The geo-SFM uses the 5th degree spline basis 

function and penalty terms of both the 3rd and 4th 

derivatives to optimize curvature and torsion along 

the fitted curve. The degree of spline basis function 

requires the 5th degree spline basis function at 

minimum in order to assure continuity and smooth 

connectivity of piecewise polynomials with respect to 

the 3rd derivative along the B-spline curve. The 

penalty terms require the 3rd and 4th derivatives in 

order to control the 2nd and 3rd derivatives of the fitted 

curve used to calculate the curvature and torsion in 

(4).  

The objective function Sgeo of geo-SFM is defined 

by 
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𝑆𝑔𝑒𝑜 = ∑ {𝑦𝑗 − 𝑃(𝑡𝑗)}
2𝑚

𝑗=1 +

𝜆3 ∫ {
𝑑3𝑃(𝑡)

𝑑𝑡3 }
2

𝑑𝑡 + 𝜆4 ∫ {
𝑑4𝑃(𝑡)

𝑑𝑡4 }
2

𝑑𝑡,
𝑡𝑚𝑎𝑥∫

𝑡𝑚𝑖𝑛

𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛
 (6) 

 

where  tP  is the fitted curve, 
jy  are m data 

points, 
3  and 

4  are the coefficients of the penalty 

terms determined to minimize the objective function 

Sgeo, and 
mint  and 

maxt  are integral intervals of the 

parameter t of the fitted curve. 

The AIC is used to identify optimal penalty terms 

as a measure of the relative quality of statistical 

models for a given set of data. Let L be the Gaussian 

log-likelihood; AIC is then given by 

 

𝑨𝑰𝑪 = ∑
𝟏

𝝈𝟐 (𝒚𝒋 − ∑ 𝑩𝒊,𝒌(𝒕𝒋)𝒙𝒊
𝒏
𝒊=𝟏 )

𝟐𝒎
𝒋=𝟏 +

𝟐𝒎 𝒍𝒏 𝝈 + 𝟑𝒎 𝒍𝒏 𝟐 𝝅 + 𝟑 ⋅ 𝟐 ⋅
𝒕𝒓𝒂𝒄𝒆(𝑯),
 

 (7) 

 

where H  is defined as 

 

𝑯 = 𝑩(𝑩𝑻𝑩 + 𝝀𝟑𝑩𝟑
𝑻𝑩𝟑 + 𝝀𝟒𝑩𝟒

𝑻𝑩𝟒)
−𝟏

𝑩𝑻 (8) 

 

and  Htrace  in (7) represents the effective 

dimension. 

3. NUMERICAL METHOD OF MULTI-
SCALE BLOOD SIMULATION 

The 1D-0D simulation consists of the closed 

loop to represent the entire circulatory system in a 

way that the outflow boundaries of the 1D domain are 

connected to the inflow boundaries of the 0D domain 

while the.outflow boundaries of the 0D domain are 

connected to the inflow boundaries of the 1D domain. 

The 1D simulation is conducted for the blood flow in 

large arteries while the 0D is for small arteries, 

arterioles, capillaries, veins, and heart. In the 1D-0D 

simulation, the statistical data are used for the 

geometry such as the radius and the length and for the 

physiological properties such as resistance, 

compliance, and inductance. The patient-specific 

geometry is also applied to a part of 1D domain,  in 

this paper, CoW in order to obtain the hemodynamic 

information for individual patients.  

The 1D simulation is applied to a total of 83 

arteries which consists of 55 arteries based on Liang 

model[7] and newly added 27 arteries of 

cerebrovascular and neck circulations[8]. The 

governing equations of the 1D simulation can be 

obtained by integrating the continuity and Navier-

Stokes equations over an artery cross-section and are 

given by [12]: 

 
𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑧
= 0 (9) 

 
𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑧
(

𝑄2

𝐴
) +

𝐴

𝜌

𝜕𝑃

𝜕𝑧
+ 8𝜋

𝜇

𝜌

𝑄

𝐴
= 0 (10) 

 

where A, Q and P are the cross-sectional area, the flow 

rate and the pressure, respectively. In addition, the 

following pressure-area relationship is used: 

 

𝑃 − 𝑃0 =
𝐸ℎ0

𝑟0(1−𝜎2)
(√

𝐴

𝐴0
− 1) (11) 

 

where E, h, r, and s represent the Young’s modulus, 

the wall thickness and arterial radius, and the Poisson 

ratio. The subscript 0 means a value at the reference 

state. Since the artery is an incompressible material, 

the Poisson ratio in the paper is taken to be 0.5. The 

Lax-Wendorff method is used to solve equations (1)-

(3).  

     In this study, the patient-specific geometry 

was applied to the part of CoW. The 1D simulation 

used the configuration of vascular network in the 

CoW and the geometric information of the arterial 

radius and length, in which could be provided easily 

by the 3D geometric information of V-Modeler. 

The 0D simulation is applied to the peripheral 

vascular network, which consists of arteries smaller 

than one used for the 1D simulations, capillaries, 

venous system, and heart. The 0-D simulation is given 

by lumped parameter models as follows[7,8]: 

 

𝐶
𝑑𝑃𝑖

𝑑𝑡
+ 𝑄𝑖+1 − 𝑄𝑖 = 0 (12) 

 

𝐿
𝑑𝑄𝑖+1

𝑑𝑡
= −(𝑃𝑖+1 − 𝑃𝑖) − 𝑅𝑄𝑖+1 (13) 

 

where C, L, and R represent the compliance, the 

inductance, and the resistance of the blood vessel. The 

4th order Runge-Kutta method is used to solve 

equations (4) and (5). 

        The 1D model can not capture a pressure drop 

(P) in a stenosis region caused by separation due to 

an abrupt change in a cross-sectional area because 

separation is a three-dimensional phenomenon.  

Therefore, the following 0D stenosis model by Young 

and Tsai is applied to the stenosis region [13.14]: 

 

∆𝑃 = 𝑅v𝑄 + 𝐾t
8𝜌

𝜋2𝐷n
4 {

1

(1−𝑆𝑅)2 − 1}
2

𝑄|𝑄| +

𝐾u
4𝜌𝐿s

𝜋𝐷n
2 �̇�, (14) 

 

where Rv, Dn, SR, Ls, and �̇� are the viscous resistance 

of the stenosis, the maximum diameter distal to the 

stenosis, a stenosis ratio defined as the percentage 

reduction in diameter (1 − 𝐷𝑠/𝐷𝑛)  with the 

minimum stenosis diameter 𝐷s , the stenosis length, 

and the time derivative of 𝑄, respectively. The first, 

second, and third terms in Eq. (14) describe pressure 

drop by viscous friction, flow separation, and 

pulsatility, respectively. In this paper, 𝑅v was  given 
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by Bessems [15] with consideration of the diameter 

change along the axial direction as follows: 

 

𝑅v = ∫
128𝜇

𝜋𝐷4(𝑥)

𝐿s

0
𝑑𝑥 , (15) 

 
where a parabolic velocity profile (i.e., Poiseuille 

flow) was assumed throughout the stenosis. The 

coefficients Kt and Ku depend on the stenosis 

geometry. They were assumed to be 1.52 and 1.2, 

respectively according to the literature [14,16] while 

Ku  was fixed as 1.2 due to its negligible influence on 

∆𝑃. However, in the UQ study, Kt was regarded as an 

uncertain parameter ranging between 1.0 and 2.699 

[17].  

When the patient-specific geometry is applied to 

the 1D-0D simulation, it is also necessary to adjust the 

differences in the physiological parameters such as 

the peripheral resistances from the literature data to 

the patient-specific ones. In this study, the SPECT 

data were used as the reference data to adjust the 

peripheral resistances in the 0D domain downstream 

from the region where the patient-specific geometry 

region were applied since they represented a map of 

the peripheral flow rates in the brain. The PC-MRA 

data were also used together with the SPECT data in 

order to predict the flow rate more accurately[8]. In 

the present method, the peripheral resistance of each 

efferent artery of the CoW, R was adjusted in every 

cardiac cycle to match with the corresponding 

reference flow rate by the SPECT data Qs as 

follows[8] : 

 

𝑅𝑖
𝑛+1 = 𝑅𝑖

𝑛 ⋅ (1 − 𝛼 ⋅
𝑄𝑠_𝑖−𝑄𝑖

𝑛

𝑄𝑠_𝑖
) (16) 

 

where the subscript i and the superscript n denote the 

efferent arterial segment number and the number of 

the cardiac cycle, respectively. The parameter α is a 

relaxation coefficient. 

4. VISUALIZATION OF 1D SIMULATION 

The commercial software for visualization of 

results is generally available for the 3D simulation but 

not for the 1D-0D simulation. In the present 

simulation, the patient-specific 3D geometry was 

applied to the CoW region as a part of the 1D 

simulation. Thus, the paper has developed a 

visualization system for the 1D simulation where the 

patient-specific data are used. 

  The visualization part is incorporated into V-

Modeler as described in Figure 3 since the 1D 

simulation uses the information of the radius and 

length extracted from the medical image data by V-

Modeler [9]. V-Modeler has also the information 

about the centreline of vascular lumen, which is 

expressed by a spline-function. First of all, the grid 

point used for the 1D simulation is allocated in the 

three-dimensional coordinates using the information 

of the centreline in the 3D. Since the radius can be 

obtained from the area resulted from 1D simulation, 

the pressure and the flow rate were remapped onto the 

3D geometry.  

 

 
Figure 3. Schematic illustration of mapping 1D 

simulation results onto 3D vascular geometry 

 

Visualization can be carried out not only for the 

changes in the flow rates, the pressures, and the cross-

sectional areas but also for the wall shear stresses, 

which are post calculated from the results of 1D 

simulation. The results can be also presented as movie 

to see dynamic changes of flow. Figure 4  shows the 

simulation results of pre-operative (Figure 4.A)) and 

post-operative (Figure 4.B)) flow rates for the same 

patient, whose vascular geometry is described in 

Figure 2.  

 

 
A)Pre-operative case         B) Post-operative case 

Figure 4.  Visualisation of flow rates in CoW 

from the posterior view 

 

Since there was stenosis on the left ICA, the 

flow rate on the left side was lower than that on the 

right side while the flow rate on both sides became the 

same after the surgery. In general, the flow rates for a 

healthy person are about equal on both sides so that 

revascularization  surgery was successful.    

5. UNCERTAINTY QUNTAIFICATION 

Even though patient-specific simulations are 

verified and validated, there is an intrinsic limit to 

accuracy due to uncertainties in clinical data.  For 

example, a size of each arterial diameter or length in 

the CoW can be different depending on a person who 

perform segmentation. These uncertainties come not 

only from segmentation but also from various sources 

such as spatial and temporal resolution of medical 

images. measurement errors, and  so on. Therefore, it 

is necessary to evaluate the simulation results not in a 
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deterministic but in a stochastic manner by 

considering uncertainties in clinical data and their 

non-linear influences through the simulation on 

results. 

However, if such uncertainties are included in 

the simulation, the computational cost would increase 

dramatically due to a large number of simulations by 

varying simulation conditions with may combinations 

of uncertainties. In order to perform UQ within a 

reasonable computational, reduction of computational 

cost is essential. There are two approaches: reduction 

in the number of simulations or in the cost of an 

individual simulation. The first one puts an emphasis 

on the efficiency of the stochastic space using 

techniques such as stochastic collocation methods 

[18] or multi-resolution stochastic expansion [19,20] 

to achieve a faster convergence of statistics. The 

second one employs reduced-order (1D–0D) models 

[21,22]. However, UQ still faces a challenge even 

with reduced order models since individual 

simulations usually involve iterative calculations to 

assimilate the data or to obtain converged solutions, 

which still requires a large amount of time and 

computational resources.  

Due to recent advancement in machine-leaning 

technique, one effective way is to construct a data-

driven surrogate model by fitting a regression model 

to the simulation data. The surrogate model can 

predict  the results based on simple input-output 

relationships from verified and validated 

cardiovascular models, which leads to significant 

acceleration of predictions with sufficient accuracy. 

Recently, a data-driven machine learning method has 

been develped using deep neural networks (DNNs) 

[23-25]. DNNs is effective to map high-dimensional 

data with complex and highly non-linear 

relationships. Even thogh incoopertaing machine 

learning techniques to cardiovascular simulations has 

been an active area of research in the last few years 

[25-27], most of them have been developed to predict 

fractional flow reserve in coronary arteries. In this 

paper, the surrogate model was developed to conduct 

UQ efficetly even on a PC compter for cerebral 

circulation, which has complex blood flow patterns 

because of collateral pathways forming a ring-like 

structureof CoW.  

5.1. Surrogate Model based on Machine 
Learning 

 The DNN was employed for the surrogaste 

model based on machine learning as a regression 

model and was fitted to the training data to obtain an 

input-output relationship from the 1D-0D somulation. 

After contructiong the surrogate model, UQ was 

condcuted folloing the pipelien described in Figure 5 

[28].  

In order to develop the surogate model, 

aquasition of trainging data is an imprtant task by 

defining inputs and outputs. In this study, input data 

were a total of 60 parameters as follows: 

 Diameters of 22 carotid and cerebral arteries in 

the 1D model (22 parameters). 

 
Figure 5. Schematic pipeline of uncertainty 

quantification [28] 

 

 Lengths of 22 carotid and cerebral arteries in the 

1D model (22 parameters). 

 𝑅v , 𝐷n , 𝐾t  ,and 𝑆𝑅  in Eqs. (14) and (15) for 

each of the left and right ICA stenoses (8 

parameters). 

 PRs at the six outlets of the CoW (7 parameters). 

 Scaling factor for the total PR (1 parameter). 

 Age (1 parameter). 

A total of 60 parameters characterized the 

patient’s anatomical and physiological conditions and  

also became  as inputs to the surrogate model for 

investigation of UQ in the cerebral circulation. In this 

paper, variation of stenosis length, 𝐿s , was ignored  

because the third term of Eq. (14) was negligible 

compared to the other terms. However, the effect of 

𝐿s  on the viscous resistance of the stenosis was 

included in 𝑅v, as seen in Eq. (15). 

After the simulation results such as 𝐴, 𝑄, and 𝑃 

were obtained by the present 1D-0D, the following 

output data were selected for the surrogate model: 

 Cycle-averaged flow rates, �̅�, in the middle of 

the carotid and cerebral arteries (22 quantities). 

 Cycle-averaged pressures, �̅� , in the middle of 

the carotid and cerebral arteries (22 quantities). 

 Mean arterial pressure, i.e., the cycle-averaged 

pressure in the middle of the left subclavian 

artery (1 quantity). 

A total of  45 output parameters above were the 

primary clinically relevant quantities of cerebral 

circulation in this study. Therefore, the surrogate 

model defined a mapping from the inputs 𝒙 ∈ ℝ60 to 

the outputs 𝒚 ∈ ℝ45. 

      After the 1D-0D simulation was performed to 

create a total of 200,000 sets of input-output varying 

60 input parameters, the data set was divided into 

three groups: 1) training , 2) validation, and test data 

in a ratio of 6:2:2. The surrogate model was developed 

using the DNN with 120,000 training data and 

validated with 40,000 test data.  The hyperparameters 

of DNN such as Nlayer, Nmode, B, and lr were set to be 

7,200, 3,00, and 10-2.5, respectively.  
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5.2. Patient Characteristics 

A total of three patients were selected for this 

study. The characteristic of each patient is 

summarized in Table 1 and the vascular geometry of 

each patient is also described in Figure 6. 

 

Table 1 Characteristics of patients[28] 

 
 

A)Patient 1               B) Patient 2          3)Patient 3 

Figure 6.  Vascular geometry{28} 

 

For all patients, CT data were used to constrcut 

vascular geometry while PC-MRI or ultrasound data 

were used for inflows we well as SECT data for 

outflows.  The mean arterial pressure in the upper arm 

were measured before the surgery. The stenosis ratios 

(𝑆𝑅) for Patients 1–3 were measured as 59%, 83%, 

and 91%, respectively, which result in the respective 

values of 𝑅v  as 0.5 mmHg s mL−1, 

11.3 mmHg s mL−1, and 66.6 mmHg s mL−1, 

respectively. Patient 1 and Patient 3 had a complete 

CoW while Patient 2 was difficult to confirm an 

anterior communicating artery (ACoA) from CT data. 

In addition, Patient 2 was identified by the surgeon aa 

high risk for CHS, based on the collected data. In fact, 

Patient 2 underwent staged surgery, where the 

stenosis was pre-dilated with a balloon, followed by 

complete dilation with a stent after two weeks. 

5.3. Uncertainty Quantification for risk 
prediction of CHS 

 The risk of CHS is identified as a drastic 

increase (>100%) in cerebral blood flow (CBF) CBF 

immediately after an ICA stenosis surgery [4]. 

Therefore, if a difference Q in flowrates between 

per-operative and post-operative flows becomes more 

that 100 %, a patient can be assumed to have high risk 

of cerebral hyperfusion status. Therefore, the 

following quantity is evaluated as an indicator:  

 

∆�̅�𝑖 =
�̅�𝑖

post
−�̅�𝑖

pre

�̅�
𝑖
pre × 100%, 𝑖 = 1, 2, …, 6 (17) 

 

where �̅�𝑖
pre

 and �̅�𝑖
post

 denote the cycle-averaged 

flow rates at the six outlets of the CoW before and 

after dilating the stenosis, respectively.  

    Since the arterial diameter or length was 

obtained from CT, its uncertainty associated with CT  

was defined with ±2 pixels (±0.702–0.936 mm, 

depending on image resolution) with respect to the 

arterial diameter obtained from segmentation. The 

uncertainty in the stenosis parameters was considered 

to be a 2-pixel except Patient 2, whose the anterior 

communicating artery (ACoA) was too difficult to be 

segmented from CT images. Hence, we assumed its 

diameter had an uncertainty of 0.1–2.6 mm, which 

included the possibility that the artery was absent. . 

The uncertainties in the measured flow rates 

were determined depending on the modality. The 

uncertainty in each modality was defined as ±16% for 

PCR-MRI, ±35% for ultrasound, and ±16% for 

SPECT. These ranges were determined based on the 

literature [8] . 

The Monte-Carlo method was used to evaluate 

propagation of uncertainties and their influences on 

the predicted ∆�̅�𝑖 . The surrogate model reduced  

significantly the time and computational costs 

required for UQ to several milliseconds on a single 

core of the CPU (Intel Core i9-9900K).  In this study, 

a GPU machine     (NVIDIA GeForce RTX2080 Ti) 

was used to perform 10,000 parallel predictions on a 

GPU, which resulted in more  significant reduction of 

computer time.  

Figure 7 summarizes Q, an increase in flow rate 

from pre- to post-operation at the middle cerebral 

artery n the stenosis side.   

 

 
Figure 7.  Comparison of probability density of 

an increase in flow rate from pre-operative to the 

post-operation  (Q) for  Patient 1-3[28] 

 

As shown in Figure 7, large variations were 

found in the predicted ∆�̅� by considering uncertities. 
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The distribution of ∆�̅�  showed more extensive 

spread, especially to high values, in Patients 2 and 3 

with more severe stenosis (83% and 91% stenosis, 

respectively) than in Patient 1 (59% stenosis). Since 

Patient 2 had a large uncertainty in the diameter of the 

ACoA, a pronounced variability of ∆�̅� (up to 681%) 

was observed, which implied that ∆�̅�  was 

significantly affected by this artery. In addtion, 

Patient 2 might have  a 3.8% chance of ∆�̅� exceeding 

100% while the corresponding estimates for 

Patients 1 and 3 were 0% and 0.001% (only one 

sample), respectively. 

 

6. SUMMARY 

The paper presented a multi-scale 1D-0D 

simulation method with multimodal medical images. 

In order to conduct uncertainty quantification,  a data-

driven surrogate model was developed using a 

machine learning technique. The risk of CHS was 

predicted  by training a DNN with 1D-0D simulation 

data. The surrogate model reduced the time required 

for a prediction to a few milliseconds. The present 

surrogate model was applied to the UQ problem by 

evaluating the impact of uncertainties in the arterial 

diameters, stenosis parameters, and measured flow 

rates on the predicted increase in CBF (∆�̅�) following 

carotid artery stenosis surgery. Due to the excellent 

parallelization performance, the surrogate model 

enabled UQ with 100,000 predictions to be performed 

in less than a minute. A high ∆�̅� of more than 100% 

was observed when the stenosis ratio was high and the 

ACoA had a small diameter, which suggested that 

severe stenosis with insufficient collateral circulation 

may be a risk factor for CHS. 

Even though the paper showed only CHS case, 

the surrogate model can be  applicable more broadly 

to prediction of cerebral circulation. The proposed 

surrogate modeling approach will facilitate the 

execution of not only UQ but also other 

computationally expensive tasks such as sensitivity 

analysis and extensive case studies to advance 

applying simulation to clinical study., 
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