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ABSTRACT 

Coarse-grid simulations of large-scale gas-solid 

flows using a filtered two-fluid model (fTFM) 

require appropriate sub-grid closure models to 

approximate unresolved physical phenomena. Such 

a sub-grid closure should be accurate enough to 

account for the effects of the inhomogeneous particle 

distribution. Several constitutive models are 

available in the literature for non-cohesive gas-solid 

flows, while they are not applicable for cohesive 

flows. Therefore, we aim to investigate the 

dependency of the drag force closure on the cohesion 

level, and integrate it into a drag correction concept 

based on machine learning (ML). 

To do so, the results of fully-resolved CFD-

DEM simulations of cohesive gas-particle flow are 

filtered with different filter sizes to develop a new 

drag closure. In detail, we simulated different 

systems by changing the cohesion level from 

cohesionless to highly cohesive, and the size of the 

systems, via coarse-graining. Afterwards, a dataset 

for the ML algorithm was created, and various 

markers were analyzed. Subsequently, a neural 

network-based drag correction model was created, 

trained, and tested with the identified markers. 

Finally, we benchmark the accuracy of the developed 

models for a range of cohesion levels. 

Keywords: Multiphase Flows, Cohesive Gas-

Particle Flows, Data-driven Modelling, Machine 

Learning  

NOMENCLATURE  𝐵𝑜  [-] Bond number 𝐶𝑎  [-] Capillary number 𝐷  [1/s] Symmetric velocity gradient tensor 𝐺 [1/m³] Filter kernel 𝐹  [N] Force 𝐹𝑟  [-] Froude number 𝐻𝑑 [-] Drag correction function 𝐻𝐷𝑁𝑁  [-] DNN-based drag function 

𝑑 [m] Particle diameter 𝑓𝐷𝑁𝑁 [-] Neural network function value ℎ  [-]  Activation function ℎ𝑖𝑗∗  [-] Dimensionless separation distance 𝑔, 𝑔 [m/s²] Gravitational acceleration 𝑅 [m] Particle radius 𝑟 [m] Predefined spatial position 𝑛𝑖𝑗 [-] Unit normal vector betw. particles 𝑝 [Pa] Pressure 𝑡 [s] Time 𝑢, 𝑣 [m/s] Eulerian velocity vector 𝑢, 𝑣 [m/s] Individual component of the 

velocity vector 𝑢𝑡 [m/s] Terminal settling velocity 𝑉𝑏∗ [-] Dimensionless bridge volume 

w [-] Neural network weight vector 𝑤0 [-] Neural network bias 𝑥 [m] Spatial position on grid 𝛼 [-] Coarse-graining ratio 𝛽 [kg/m³s] Drag coefficient ∆𝑓 [m] Fluid filter size ∆𝐺  [m] Fluid grid size 𝜙 [-] Volume fraction Λ  [-] Liquid loading level 𝛷𝑑 [N/m³] Interphase drag force 𝜌 [kg/m³] Density 𝜃 [rad] Contact angle of the liquid bridge µ𝑙 [Pa s] Liquid dynamic viscosity 𝜎 [N/m] Surface tension 𝜓 [-] Neural network input �̇� [1/s] Shear rate 𝜏 [kg/ms²] Phase stress tensor 

 

Subscripts and Superscripts 

cap Capillary 

DNN Deep Neural Network 

d Drift 

g Gas 

ref Reference 

P Particle 
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s Solid 

sl Slip 

sgs Sub-grid contribution 

tot Total 

max Maximum 

min Minimum 

vis Viscous 

z Z-direction 

Eul Eulerian 

Micro Microscopic 

− Filtered 

~ Filtered and phase-weighted 

* Scaled dimensionless quantity 

1. INTRODUCTION  

Fine particles are widely used in various 

industrial sectors as these particles features high 

specific surface area, which increases the rate of heat 

and mass transfer [1]. In the petrochemical industry, 

small particles are used as reacting powders for 

pulverized coal combustion and gasification. 

Another example is fluid catalytic cracking process, 

in which fine particles are used as FCC catalysis [2]. 

In the pharmaceutical industry, active 

pharmaceutical ingredients (API) are typically fine, 

which can improve the dissolution and release rate in 

the body [3]. In the food industry, due to their high 

specific surface area, fine powders are desirable [4]. 

However, the effect of cohesive force on powder 

flowability becomes more important for fine powder, 

compared to coarse particles. 

Powders with cohesive interactions force can be 

categorized from mildly cohesive to highly cohesive. 

The level of cohesion can be quantified based on the 

Bond number, which describes the ratio of cohesion 

forces to the gravitational force. In addition to van 

der Waals forces, particle can become cohesive due 

to presence of liquid bridge between the particles in 

the gas-solid systems. This cohesive force is 

associated with viscous and surface tension forces, 

quantified by a Bond and capillary number [5]–[7]. 

As these phenomena occur at a particle level, 

quantification of these forces is not easy to 

investigate through experimental approaches. 

However, detailed numerical simulation can be of 

significant help in analyzing the contribution of 

different forces in the strength of granule and powder 

flowability. Typically, two different approaches can 

be used in this regard: i) computational fluid 

dynamic (CFD) through Two-Fluid Method (TFM) 

approach[8]; ii) CFD coupled with Discrete Element 

Method (CFD-DEM)[9]. These approaches can be 

used in highly-resolved and un-resolved scales. 

However, the computational cost for the highly-

resolved one is extremely high when simulating 

industrial scale systems. Therefore, application of 

filtered approaches as un-resolved method are 

desired especially for industrial-scale systems [10], 

[11]. 

 

Simulations of industrial-scale gas-particle 

flows based on the filtered Two-Fluid model (fTFM) 

approach, and therefore with coarse grids, depend 

critically on constitutive models that account for the 

effects of inhomogeneous structures at the sub-grid 

level [12]. The complexity of accounting for 

inhomogeneous structures increases when 

considering cohesive gas-particle flows [13].  

Previously, an artificial neural network-based 

drag correction model was developed by Jiang et al. 

[14], [15] for non-cohesive gas-particle systems. 

However, the question persists if this model is useful 

for cohesive systems or not. Therefore, in our current 

contribution, we aim to analyze the influence of 

cohesion on the drag force closure and integrate it 

into a machine learning-based drag correction 

concept. Prior studies [16] identified the sub-grid 

drift velocity as the crucial quantity for modeling the 

filtered drag coefficient. Unfortunately, the drift 

velocity is unavailable in filtered simulations. To 

correctly reproduce mesoscale structures, and since 

the drift velocity is also computable, we start with 

detailed CFD-DEM-based (Computational Fluid 

Dynamics-Discrete Element Method) simulations, 

and filter them with different filter sizes to emulate 

quantities available in an fTFM simulation.  

2. MODEL DESCRIPTION AND 

FILTERING PROCEDURE  

We perform fully resolved CFD-DEM 

simulations of a 2D periodic box over a wide range 

of different setups. Subsequently, these simulations 

are filtered (i.e., spatially averaged) with different 

filter sizes. Coarse-grained CFD-DEM simulations 

are used to perform simulations with larger system 

sizes to limit the computational expense. The CFD 

part is realized within the framework of 

OpenFOAM [17], and the DEM part is solved 

using LIGGGHTS [18]. The coupling between 

these two tools is performed with CFDEM [18]. 

2.1. Simulation setups 

The fluid grid size ∆𝐺  was chosen equal to three 

times the particle (or parcel in case of coarse-grained 

simulations) diameter. The domain size is 16 ∆𝐺 x 2 ∆𝐺 x 64 ∆𝐺 in each respective regime. The coarse-

graining ratio 𝛼 is defined as the ratio of the parcel 

and primary particle diameter (simulations featuring 

primary particles are indicated by 𝛼 = 1). Coarse-

grained parameters are scaled from the primary to the 

coarse system according to [19]. Cohesion results 

from liquid bridges between the particles. These 

liquid bridges are modelled after Wu et al. [20]. The 

liquid loading level Λ is unchanged over all cohesive 

simulations. The cohesion level is varied from 

cohesionless to highly cohesive. For detailed 

information about the used cohesion models see 

Append A. In Table 1 an overview of all performed 

simulation and their system parameters is given.  
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Table 1. Overview simulation regimes 

 𝜶 = 𝟏 𝜶 = 𝟑 𝜶 = 𝟓 𝑑𝑃 [m] 150e-6 450e-6 7.5e-4 ∆𝐺 [m] 450e-6 1.35e-3 2.25e-3 𝜙𝑠,𝑡𝑜𝑡 0.10 

Domain 

size 
16 ∆𝐺 x 2 ∆𝐺 x 64 ∆𝐺  

Primary 

particles 
10,561 285,147 1,320,125 

Parcels - 10,561 10,561 𝐵𝑜 0-20 0-100 0-100 Λ 0.001 𝐶𝑎 0.01 ∆𝑓 3 ∆𝐺; 4 ∆𝐺; 5 ∆𝐺  

 

The calculated terminal settling velocity 𝑢𝑡 for 

the primary particle is 0.8562 [m/s]. The reference 

time is 𝑡𝑟𝑒𝑓  =  𝑢𝑡/𝑔 and therefore equal to 0.0873 

[s]. In [19] comparable simulations needed 5 times 𝑡𝑟𝑒𝑓 to reach a statistical steady-state. Therefore, 

simulations are performed for nearly 30.𝑡𝑟𝑒𝑓 in our 

present study. The time frame in which data was 

sampled ranged from 18.𝑡𝑟𝑒𝑓 to 30.𝑡𝑟𝑒𝑓, with 

sampling performed every 0.25 𝑡𝑟𝑒𝑓.  

2.2 Filtering Procedure 

Filtering operations are performed via CPPPO 

[21]. The filtered solid volume fraction is: �̅�𝑠(𝑥, 𝑡) = ∭ 𝜙𝑠(𝑟, 𝑡) 𝐺(𝑟 − 𝑥) 𝑑𝑟 (1) 

where 𝑥 is the spatial position (any position in the 

grid), 𝑟 is the predefined spatial position. The filtered 

gas volume fraction is then �̅�𝑔 = 1 − �̅�𝑠.The box 

filter kernel or top-hat kernel 𝐺(𝑟 − 𝑥) is normalized 

so that ∭ 𝐺(𝑟 − 𝑥) 𝑑𝑟 = 1 and is defined by the 

fluid filter size ∆𝑓 after: 𝐺(𝑟 − 𝑥) = { 1Δ𝑓3 , if |𝑟 − 𝑥| ≤ ∆𝑓20, otherwise  (2) 

The filtered gas and solid velocity are then: �̃�𝑔 = 1�̅�𝑔 ∭ 𝐺(𝑟 − 𝑥) 𝜙𝑔(𝑟, 𝑡) 𝑢𝑔(𝑟, 𝑡) 𝑑𝑟 (3) 

�̃�𝑠 = 1�̅�𝑠 ∭ 𝐺(𝑟 − 𝑥) 𝜙𝑠(𝑟, 𝑡) 𝑢𝑠(𝑟, 𝑡) 𝑑𝑟 (4) 

The filtered gas pressure is: �̅�(𝑥, 𝑡) = ∭ 𝐺(𝑟 − 𝑥) 𝑝(𝑟, 𝑡) 𝑑𝑟 (5) 

The mass and momentum conservation balances for 

filtered CFD-DEM equations of the gas and the solid 

phase can be found in Appendix B. 

2.3. Closure for the interphase drag 
force 

In our contribution we focus on the closure for 

the interphase drag and the mesoscale interphase 

force. The mesoscale interphase force is typically 

referred to as the sub-grid contribution of the 

interphase drag force, and denotated as 𝛷𝑑,𝑠𝑔𝑠 in 

what follows. It is defined as the difference between 

the filtered Eulerian drag force �̅�𝑑 and the interphase 

drag force �̃�𝑑 calculated based on the filtered slip 

velocity and the microscopic drag coefficient: 𝛷𝑑,𝑠𝑔𝑠 = �̅�𝑑 − �̃�𝑑=  𝛽𝐸𝑢𝑙 (𝑢𝑔 − 𝑢𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅      −  𝛽𝑀𝑖𝑐𝑟𝑜(�̃�𝑔 − �̃�𝑠) 

(6) 

where 𝛽𝐸𝑢𝑙 is the Eulerian drag coefficient. 𝛽𝐸𝑢𝑙 is 

equal to the momentum exchange term in the 

performed CFD-DEM simulations. 𝛽𝑀𝑖𝑐𝑟𝑜 is the 

drag coefficient evaluated based on filtered 

quantities using specific drag law, e.g. Beetstra et al. 

[22]. Analogously as in [16] the filtered Eulerian 

drag force (since not available in filtered 

simulations) is modelled by: 𝛽𝐸𝑢𝑙(𝑢𝑔 − 𝑢𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≈ 𝛽𝑀𝑖𝑐𝑟𝑜(�̃�𝑔 − �̃�𝑠 + �̃�𝑑)=  𝛽𝐸𝑢𝑙(�̃�𝑔 − �̃�𝑠) 
(7) 

𝛽𝐸𝑢𝑙 is the filtered Eulerian drag coefficient. The 

sub-grid drift velocity �̃�𝑑 is defined by: �̃�𝑑 = 𝜙𝑠𝑢𝑔̅̅ ̅̅ ̅̅�̅�𝑠 − �̃�𝑔 (8) 

When rearranging Eqs. (6) and (7) one can describe 

the mesoscale interphase force by 𝛷𝑑,𝑠𝑔𝑠 =𝛽𝑀𝑖𝑐𝑟𝑜  �̃�𝑑. Using this definition and Eq. (6) we can 

finally model the filtered Eulerian drag force by: �̅�𝑑 = �̃�𝑑  (1 + �̃�𝑑�̃�𝑔 − �̃�𝑠) =  �̃�𝑑 𝐻𝑑 (9) 

Where 𝐻𝑑 is the so-called drag correction function, 

which must fulfil the following properties: 

• 𝐻𝑑 → 1 for sufficiently small filter sizes 

(i.e., ”well-resolved” simulations). 
• 𝐻𝑑 → 1 in the dilute (i.e., a single particle 

sedimenting at its terminal speed) and dense 

limit (i.e., a closely-packed, hence 

homogeneous, particle suspension 

sedimenting at steady state). 
 

If we rearrange Eqs. (7) and (9) on can see that 

the drag correction function can also be 

approximated by: �̅�𝐸𝑢𝑙𝛽𝑀𝑖𝑐𝑟𝑜 = 1 + �̃�𝑑�̃�𝑔 − �̃�𝑠 = 𝐻𝑑  (10) 
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3. DEEP NEURAL NETWORK 

Jiang et al. [14], [15] introduced the usage of a 

Deep Neural Network (DNN) instead of a correlation 

function to predict the sub-grid drift velocity and 

subsequently the drag correction function. We 

evolve this idea into cohesive systems. From this 

section on, note that the term ‘scaled’ is used in the 

manner typical of fTFM to describe dimensionless 

parameters. In contrast, the term ‘normalized’ 
describes the feature normalization (or “scaling”) 
related to the DNN induced data preparation. In order 

to develop a correct and accurate DNN-based drag 

correction function, the target for the training, which 

of course also represents the prediction, must be 

defined first. Subsequently, the transformation of the 

prediction into the actual drag correction is specified. 

3.1. Target scaling 

Since dimensionless quantities are preferred, a 

direct prediction of the drift velocity is not provided 

and is unusual. Deep Neural Networks often require 

target normalization. This demands knowledge or a 

search of minimum or maximum values. The first 

one is often not available or ties the prediction to 

certain preconditions, the latter comes with high 

computational effort and is often not possible. 

Therefore, scaling the target with known and 

available system quantities is preferred. Preliminary 

tests showed that scaling and additional 

normalization of the target is not beneficial to the 

prediction quality. Subsequently, we simply scale the 

target and do not use any additional normalization. 

In the present contribution, we focus on the vertical 

drag correction, represented by the z-direction in our 

simulations. Thus, only the z-components of the 

velocities and the drag coefficients were used for our 

analysis. 

Jiang et al. [14] scaled the drift velocity with the 

filtered solid volume fraction, creating �̅�𝑠 �̃�𝑑,𝑧 as the 

target. In a preceding publication [15], they adapted 

the target to 
�̅�𝑠 �̃�𝑑,𝑧𝜙𝑠,𝑚𝑎𝑥 𝑢𝑡, making it dimensionless. Two 

other options appear to be possible dimensionless 

targets, (i) the drift velocity relative to the terminal 

settling velocity �̃�𝑑,𝑧 𝑢𝑡⁄ , and (ii) the direct 

prediction of 
�̃�𝑑,𝑧𝑢𝑔,𝑧−𝑢𝑠,𝑧 from Eq. (10). The first option 

gave worse results in preliminary tests, and the 

second option could lead to numerical problems. 

Finally, 
�̅�𝑠 �̃�𝑑,𝑧𝜙𝑠,𝑚𝑎𝑥 𝑢𝑡 is selected as the target. Using the 

example of a single-layer neural network, the 

prediction is then: �̅�𝑠 �̃�𝑑,𝑧𝜙𝑠,𝑚𝑎𝑥  𝑢𝑡 = 𝑓𝐷𝑁𝑁 = ℎ(𝑤𝑇 �̂� + 𝑤0) (11) 

Where �̂� is the normalized input of the neural 

network, and ℎ is the activation function. 𝑤 the 

weights of the layer and 𝑤0 is the bias. 

3.2. DNN-based drag correction 
function 

To build the DNN-based drag function Eq. (11) 

is rearranged to: 𝐻𝐷𝑁𝑁 = 𝜙𝑠,𝑚𝑎𝑥  𝑢𝑡�̅�𝑠(�̃�𝑔,𝑧 − �̃�𝑠,𝑧) 𝑓𝐷𝑁𝑁 (12) 

In order to meet the requirements stated in Section 

2.3, and to be consistent with Jiang et al. [15], 𝐻𝐷𝑁𝑁  

is corrected. If the filtered solid volume fraction �̅�𝑠 

is outside the range of 0.01 to 0.55, the DNN-based 

drag function is set to zero. Within the specified 

range, the function value is used. The actual drag 

correction function is then: 𝐻𝑑,𝑧 = 1 + {𝐻𝐷𝑁𝑁  , 0.01 ≤ �̅�𝑠 ≤ 0.550 , 𝑒𝑙𝑠𝑒  (13) 

3.3. Marker selection 

All Eulerian quantities available in the 

simulation are in question as a marker or input 

quantity of the neural network. Also, system 

parameters like the Bond number or the filter length 

can be used. In addition, combinations of the 

available Eulerian quantities as well as markers 

calculable with small computational effort, e.g., the 

gradient of the pressure field, are applicable. Jiang et 

al. [15] used the dimensionless filter length ∆𝑓∗  and 

the particle Reynolds number as system parameters. 

In our simulation dataset, the particle Reynolds 

number is not changing for a single sedimenting 

particle, hence it is replaced by the Bond number 

since it accounts for cohesion.  

The relative slip velocity in z-direction �̃�𝑠𝑙,𝑧 𝑢𝑡⁄ , 

the filtered solid volume fraction relative to the 

maximum solid fraction �̅�𝑠 𝜙𝑠,𝑚𝑎𝑥⁄ , and the scaled 

gradient in the z-direction of the filtered gas pressure 

field ∇𝑝𝑧∗ are used equally as in [15]. We add the 

scaled shear rate of the filtered slip velocity �̇�∗. The 

input vector 𝜓 of the DNN is then defined like: 

𝜓 = (∆𝑓∗ , �̅�𝑠𝜙𝑠,𝑚𝑎𝑥 , �̃�𝑠𝑙,𝑧𝑢𝑡 , ∇𝑝𝑧∗, 𝐵𝑜, �̇�∗) (14) 

For the detailed calculation of each marker, see 

Appendix C. All markers are scaled to be 

dimensionless. Since different orders of magnitudes 

are present within the input values and DNNs 

typically require normalization [23], markers are 

additionally normalized. 

3.4. Marker normalization 

The normalization process of the input vector 

follows: �̂� = (𝜓 − 𝜓𝑚𝑖𝑛)/(𝜓𝑚𝑎𝑥 − 𝜓𝑚𝑖𝑛) (15) 

Where 𝜓𝑚𝑖𝑛 and 𝜓𝑚𝑎𝑥  are the minimum and 

maximum values of the respective marker. Before 

normalization, the available data is separated into 

training, validation, and testing data sets. The 
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respective min and max values are then searched in 

the training data and used to normalize (and 

denormalize) the validation and the testing data to 

avoid data leakage [24]. If a pre-trained neural 

network is used for prediction based on a new 

dataset, the applied normalization strategy offers two 

options: (i) normalize with min-and max-values 

based on the new input data, requiring a search over 

all values, or (ii) normalize with min-and max-values 

based on the model derivation. In the present 

contribution, we use the known values from the 

model derivation as its computationally less 

demanding. 

3.5. Deep Neural Network Design 

We use a DNN with three hidden layers, where 

the respective number of hidden nodes are 128, 64, 

and 32. Each hidden layer is followed by a 

Rectifying Linear Unit (ReLu) as the activation 

function. Regularization is ensured by adding a 

dropout layer after each hidden layer. The dropout 

rate for all is 0.05. Mini-batch training and Adam 

[25] are combined for optimizing the network. The 

minibatch size is 2048, equal to the number of CFD 

cells. The output layer has no (or a linear) activation 

function, typical for regression tasks [23]. Weights 

are initialized based on the “he uniform” distribution 

[26]. 

4. RESULTS 

4.1. Filtering results 

Before performing and filtering cohesive 

simulations, the filtering procedure is validated in the 

cohesionless setup with literature data from Ozel et 

al. [16]. Figure 1 shows the filtered Eulerian drag 

coefficient scaled by the microscopic drag 

coefficient over the relative drift velocity. This 

comparison only considers representative data, 

meaning that only 𝛽𝑧𝐸𝑢𝑙 values higher or equal to zero 

are accepted. Eqs. (7) and (10) show then that -1 is 

the lower limit for the �̃�𝑑,𝑧 �̃�𝑠𝑙,𝑧⁄ . From [16] no data 

over their the upper limit, defined where 𝛽𝑧𝐸𝑢𝑙 and 𝛽𝑧𝑀𝑖𝑐𝑟𝑜are equal, is available. Within this range, the 

filtered data agrees very well with the literature data. 

One has to note that the literature data origins in 3D 

simulations, while the shown data is from pseudo-2D 

simulations. 

 

 

Figure 1. Scaled filtered Eulerian drag 

coefficient over the scaled drift velocity. 

4.2. Prediction of the DNN 

Figure 2 depicts an actual random snapshot of a 

simulation compared to the emulated one based on 

the DNN prediction. Here the actual target and 

output value of the DNN is shown (see Eq. (11)). As 

can be seen, regions of high negative values are 

qualitatively well predicted, while for positive values 

the prediction deviates. 

 

Figure 1. Contour plot of the scaled drift 

velocity. The left panel: DNN prediction. Right 

panel: target (ground truth). 

For the quantitative perspective, Figure 3 shows 

a correlation plot for the DNN prediction and the 

target. The data points shown represent a single test 

dataset, while the displayed quality measures are 

from the entire test dataset. As can be seen, the 

coefficient of determination 𝑅2 is equal to 0.9055, 

the means squared error is 2.613e-4, and the mean 

absolute error 8.997e-3. 
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Figure 3. Correlation plot of the DNN prediction 

and the target for a single random test dataset. 

Figure 4 shows the binned statistics of the DNN 

target over the filtered solid volume fraction. The 

shown data is based on the highly cohesive coarse-

grained simulation with 𝛼 = 5 and 𝐵𝑜 = 90. All 

filtered timesteps defined in Section 2.1 are 

considered. The prediction is depicted here 

separately for each filter length. As it can be seen, for 

the two smaller filter lengths the prediction is very 

accurate in medium to dense regions. In dilute 

regions, i.e. �̅�𝑠 smaller 0.1, the predictions of all 

filter lengths show higher deviations. The higher 

filter length leads to higher deviations over all solid 

volume fractions. 

 

Figure 4. Target and prediction of the DNN 

binned with respect to the filtered solid volume 

fraction. 

4.3. Drag correction function 

After the detailed look on the DNN prediction in 

Figure 4, the focus here is shifted to the actual drag 

correction function. Based on the same highly 

cohesive data, Figure 5 shows the drag correction 

function over the filtered solid volume fraction. The 

aspect of Figure 4, that the highest deviations appear 

in the dilute regions is also found in Figure 5. In 

dilute regions, up to 0.1 solid volume fraction, a clear 

underprediction can be detected. Above and up to a 

filtered solid volume fraction of 0.40 the predictions 

are very close the target. In dense regions, the 

forecasts are sometimes very accurate, but also 

deviate in part. However, the prediction is more 

accurate than in dilute regions. The influence of the 

filter length is clearly visible.  

In contrast to the direct prediction of the DNN 

shown in Figure 4 the big filter length does not lead 

to higher deviations. 

 

Figure 5. Drag correction function versus 

filtered solid volume fraction for different filter 

lengths. 

5. SUMMARY 

We performed fully-resolved CFD-DEM 

simulations in a 2D domain as the basis of a machine 

learning-based closure development for the 

modeling of cohesive gas-particle flows. These 

simulations were then filtered with different filter 

sizes to be able to develop such a drag closure for 

cohesive systems required for the fTFM approach. In 

detail, we simulated different systems by changing 

the cohesion level from cohesionless to highly 

cohesive, and the size of the systems, via coarse-

graining. The filtering routine was successfully 

validated against literature data. 

Then from the markers that are available in a 

basic fTFM simulation the ones with a high 

correlation to the defined target value, were selected. 

It has been shown that scaling the target to a 

dimensionless quantity is sufficient and that this 

avoids problems with respect to normalization. 

Nevertheless, that the input variables were also made 

dimensionless via scaling, an additional 

normalization is necessary. With the identified 

markers we then created, trained, and tested the 

neural network-based drag correction model.  

The overall accuracy of the trained DNN is 

sufficient in terms of a robust drag correction 

prediction for a wide range of cohesion levels and 

system sizes. We additionally showed a detailed 

analysis of a highly cohesive simulation in a 

comparably large system. Three different ranges of 

particle volume fraction in terms of prediction 
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quality were observed. In dilute regions a clear 

underprediction was observed. For medium-dense 

areas, the predictions are very close to the target. In 

dense regions, the drag correction function varies 

between very accurate and less accurate. The 

influence of the filter length is clearly visible.  

In our ongoing work the extension to 3D 

simulations is followed. These fully periodic systems 

will provide additional insights regarding drag 

correction. Specifically, investigations towards the 

anisotropy of the drag coefficient, and the associated 

corrections, can be expected from our 3D data. 

 

APPENDIX A: COHESION MODELING 

The cohesive force in the performed CFD-DEM 

simulations is the sum of the viscous and capillary 

force. The viscous force is described after Pitois et 

al. [27] by: 𝐹𝑣𝑖𝑠 = − 3 𝜋2  𝜇𝑙  𝑅ℎ𝑖𝑗∗  𝑣𝑛,0 𝑋𝑣2  𝑛𝑖𝑗   (A.1) 𝑋𝑣 = 1 − 1√1 + 2 𝑉𝑏∗𝜋 ℎ𝑖𝑗∗ 2
 

(A.2) 

where 𝜇𝑙 is the liquid viscosity, 𝑅 is the particle 

radius, 𝑣𝑛,0 the impact velocity,  𝑛𝑖𝑗 the unit normal 

vector between the colliding particles and 𝑉𝑏∗ the 

dimensionless bridge volume. The dimensionless 

separation ℎ𝑖𝑗∗  is taken to be ℎ𝑖𝑗∗ =max (ℎ𝜀,𝑒𝑓𝑓 𝑅⁄ , ℎ𝑖𝑗∗ ), where ℎ𝜀,𝑒𝑓𝑓  is an effective 

roughness length of the particle. The capillary force 

model provided by Mikami et al. [28] is adopted in 

our present work: 𝐹𝑐𝑎𝑝 = 𝜋 𝑅 𝛾 [exp(A ℎ𝑖𝑗∗ + B) + C] n𝑖𝑗  (A.3) 𝐴 = −1.1 (𝑉𝑏∗)−0.53 (A.4) 𝐵 = [−0.34 ln(𝑉𝑏∗) − 0.96] ∙ 𝜃2− 0.019 ln(𝑉𝑏∗) + 0.48 
(A.5) 𝐶 = 0.0042 ln(𝑉𝑏∗) + 0.078 (A.6) 𝜃 is the contact angle of the liquid bridge. The 

dimensionless surface-surface separation distance is 

here defined as ℎ𝑖𝑗∗ = ℎ𝑖𝑗 𝑅⁄ . If particles overlap in a 

collision, the dimensionless separation distance is set 

to zero. The capillary number Ca is: 𝐶𝑎 = µ𝑙  𝑢𝑡𝜎   (A.7) 

APPENDIX B: FILTERED EQUATIONS 

For filtered CFD-DEM simulations the mass 

conservation balances for the gas and solid phase are: 𝜕(𝜌𝑔�̅�𝑔)𝜕𝑡 + ∇ ∙ (𝜌𝑔�̅�𝑔�̃�𝑔) = 0 (B.1) 𝜕(𝜌𝑠�̅�𝑠)𝜕𝑡 + ∇ ∙ (𝜌𝑠�̅�𝑠�̃�𝑠) = 0 (B.2) 

The momentum conservation balance for the gas and 

solid phase are then: 𝜕(𝜌𝑔�̅�𝑔�̃�𝑔)𝜕𝑡 + ∇ ∙ (𝜌𝑔�̅�𝑔�̃�𝑔 �̃�𝑔)= −�̅�𝑔∇�̅� − ∇ ∙ (𝜌𝑔𝜙𝑔𝑢𝑔′′ 𝑢𝑔′′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) − ∇ ∙ 𝜏�̅�+ 𝜌𝑔�̅�𝑔𝑔 − �̃�𝑑 − 𝜙𝑔′ ∇𝑝′̅̅ ̅̅ ̅̅ ̅̅  

(B.3) 

 𝜕 (𝜌𝑠�̅�𝑠�̃�𝑠)𝜕𝑡 + ∇ ∙ (𝜌𝑠�̅�𝑠�̃�𝑠 �̃�𝑠)= −�̅�𝑠∇�̅� − ∇�̅�𝑠 − ∇ ∙ (𝜌𝑠𝜙𝑠𝑢𝑠′  𝑢𝑠′̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )− ∇ ∙ 𝜏�̅� + 𝜌𝑠�̅�𝑠𝑔 + �̃�𝑑 − 𝜙𝑠′∇𝑝′̅̅ ̅̅ ̅̅ ̅̅  

(B.4) 

Note that a single prime is used for the fluctuation 

from an algebraic average, e.g. 𝑢𝑠′ = 𝑢𝑠 − �̅�𝑠 and a 

double prime for the fluctuation from a phase-

weighted average, e.g. 𝑢𝑔′′ = 𝑢𝑔 − �̃�𝑔. 

APPENDIX C: CFD-DEM SIMULATION 

PARAMETERS 

In Table C.1 all parameters of the performed 

CFD-DEM simulations, that are not included in 

Table 1, are summarized. 

Table C.1. Simulation parameters 

Particle density 2000 [kg/m³] 

Gas Density 1.3 [kg/m³] 

Gas Viscosity 1.44e-5 [Pa] 

Young’s modulus 4e6 [Pa] 

DEM time step 1e-6 [s] 

CFD time step 1e-5 [s] 

Coeff. of restitution 0.4 

Coeff. of friction 0.9 

Coeff. of rolling friction 0.2 

 

APPENDIX D: MARKER DEFINITIONS 

The dimensionless filter length ∆𝑓∗  is defined by: ∆𝑓∗= ∆𝑓 𝑑𝑃  𝐹𝑟1/3 (D.1) 

Where the Froude number 𝐹𝑟 is 𝑢𝑡2 (𝑔 𝑑𝑃)⁄ . The 

scaled gradient of the gas pressure field in z-direction 

is: ∇𝑝𝑧∗ = 1𝜌𝑠 𝑔 𝜕�̅�𝜕𝑧 (D.2) 

The Bond number is: 𝐵𝑜 = 6 𝜎𝑑𝑝2 𝑔 𝜌𝑝 (D.3) 

Where 𝜎 is the surface tension. The dimensionless 

shear rate is: �̅̇� = 𝑢𝑡𝑔 √2 ∙ 𝐷 ∶ 𝐷 (D.4) 

Where 𝐷 is the symmetric velocity gradient tensor of 

the slip velocity. The scaled filtered slip velocity is 
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the difference between the filtered gas and filtered 

solid velocity: �̃�𝑠𝑙,𝑧𝑢𝑡  =  �̃�𝑔,𝑧 − �̃�𝑠,𝑧𝑢𝑡  (D.5) 
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