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ABSTRACT 

More than 10 models are available in the 

literature to protect emergency relief lines against 

valve instabilities and are proposed for the 

replacement of the 3% rule. They differ in 

assumptions and simplifications. Literature models 

to evaluate the stability of spring-loaded safety 

valves in gas service that can be used to predict an 

allowable inlet line length are classified, and a 

representative example of them is introduced more 

deeply to the readers. 

The change in the fluid force acting on the disk 

is introduced, and two methods of modelling are 

shown, including measurement results from both 

literature and from the authors. The effect of the 

changing of the fluid force during the opening is 

described in relation to the models investigated, and 

it is shown that not all models are capable of taking 

the changes in the fluid force into account. 

Two models are expanded to consider the effects 

of the changing fluid force during the opening of the 

valve and are compared to simulation results, which 

show that the expanded models are capable of 

predicting the effect of the change, unlike their 

original forms. 

Keywords: chatter, fluid force, safety valve, valve 

instability  

NOMENCLATURE  

API  American Petroleum Institute 

 

Aeff [m2] effective area 

Âeff [m2] normalised effective area 

F [N] force 

L [m] inlet line length 

a [m/s] speed of sound 

c [Ns/m] damping 

k [N/m] spring stiffness 

m [kg] moving mass 

𝑚̇ [kg/s] mass flow 

t [s] time 

topen [s] opening time 

w [m/s] fluid velocity 

x [m] current position of the disk 

x0 [m] spring pre-compression 

𝜌 [kg/m] density 

𝜃 [°] discharge angle 

𝜔𝑛 [rad/s] natural frequency 

 

Subscripts and Superscripts 

 

close closed the safety valve 

f fluid 

face disk face 

open fully open safety valve 

n nozzle 

 

1. INTRODUCTION 

Safety valves serve the purpose of protecting 

against overpressure, and as such their stable 

operation is necessary for the safety of the protected 

system. Experimental evidence has shown that stable 

operation is not guaranteed in all conditions, and 

instability can appear in the forms of chatter and 

flatter [1]. 

One of the sources of these instabilities is the 

piping connected to the safety valve, especially the 

inlet line leading up to it. Models to avoid chatter 

caused by the inlet line have been researched since 

Sylvander and Katz’s [2] initial research for the API 

in 1948. Their research has evolved into the three 

percent rule, which is currently in both the API 520 

Part II [3] and ISO4126-9 [4] standards. This rule in 

its current form limits the non-recoverable pressure 

loss in the inlet line to three percent of the set 

pressure of the safety valve. It is based on steady 

state flow through the valve and was not originally 

intended to avoid dynamic instabilities.  

Research into other methods of determining 

stability has been ongoing since the adoption of the 
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three-percent rule, with Darby [5] finding more than 

50 publications regarding the stability of the safety 

valve. Even as many of these do not contain new 

stability models, or contain models that have been 

later on improved by their authors, the CSE Institute 

[6] has identified more than 10 stability models. 

In this paper the scope of investigation is limited 

to models capable to size safety valves for gas 

service and that do not solve the whole transient 

movement of the safety valve. The latter means that 

there will be no Computational Fluid Dynamics 

(CFD) models reviewed, as they are typically too 

time consuming for industrial purposes. 

2. MODEL DESCRIPTION AND 
COMPARISON 

Models can be categorised based on the assumed 

source of the instability. Reviewing models from the 

last 30 years, four main categories of models have 

been identified: 

Balance-based models are based on a pressure 

balance on the valve disk, consisting of the losses in 

the inlet line, the set pressure and the reseating 

pressure. The models of Singh [7] and Melhem’s 

simple force balance [8] are examples of this 

category, along with of course the three-percent rule 

itself. 

The pressure wave models limit the size of the 

initial waves in the system, based on either the 

reseating pressure or the set pressure. This category 

includes the pressure surge model of Frommann and 

Friedel [9], later improved by Cremers et al. [10]. 

Stability analysis models operate based on the 

assumption that a working point exists. A stability 

analysis in the complex frequency domain is then 

conducted to determine if the working point is stable. 

Such models have been previously created by 

MacLeod [11] and Kastor [12] back in the 80ies, and 

more recently by Izuchi [13]. 

The quarter wave model of Hős [14] models the 

pressure distribution according to the first harmonic 

of the system, and evaluates the system based on that. 

All the models listed above except for the 

MacLeod model (which is for systems without an 

inlet line) share the assumption or have such a result, 

that safe operation of a safety valve can be secured 

by proscribing a maximum permissible inlet line 

length. 

The various models within a category are rather 

similar, and as such only the most precise 

representative will be chosen from them. As such this 

paper will limit its scope the to the Melhem’s [8] 

simple force balance method, the improved surge 

model by Cremers [10], the Izuchi model [13] and the 

quarter-wave model of Hős [14]. 

2.1 Basic equations of the system 

The movement within the valve is modelled by 

all models as a simple spring-mass-damper system 

moved by the fluid force: 

 

𝐹𝑓 = 𝑚 ⋅ 𝑥̈ + 𝑐 ⋅ 𝑥̇ + 𝑘 ⋅ (𝑥 + 𝑥0) (1) 

 

with 𝑥0 being the length of spring pre-compression 

necessary for the valve to open at the given set 

pressure, and as such can be calculated from it. On 

the right side of the equation, the moving mass 𝑚 and 

the spring stiffness 𝑘, while not directly available in 

the manufacturer’s catalogues, can be measured 

directly, without mounting the safety valve on a test 

rig. The fluid force 𝐹𝑓 and the damping 𝑐 however 

are affected by many hard to measurable, or 

changing variables during even the installation, for 

example the damping containing the friction forces 

acting upon the disk or the spindle. 

Another assumption shared between models is 

the size of the initial pressure wave in the system. 

E.g., in the pressure wave models, and some balance-

based models, it is calculated as a Joukowsky shock 

wave, and its maximum value is: 

  

Δ𝑝𝑚𝑎𝑥 = 𝜌 ⋅ 𝑎 ⋅ 𝑤 (2) 

 

with the 𝜌 being the density in the upstream vessel, 

and 𝑎 the speed of sound in the same location. 𝑤 is 

the velocity of the fluid in the pipeline system, which 

is calculated from the mass flux flowing through the 

fully open safety valve.  

The wave pressure considered to linearly 

increase with time, starting on the set pressure, up 

until reaching the return time of a wave in the inlet 

line. The return time is calculated as twice of the 

length of the inlet line 𝐿 divided by the stagnation 

speed of sound in the upstream vessel. This means 

that at the time of the valve has fully opened, the 

wave pressure above the set pressure is: 

 

Δ𝑝(𝑡𝑜𝑝𝑒𝑛) = Δ𝑝𝑚𝑎𝑥 ⋅
𝑡𝑜𝑝𝑒𝑛

2 ⋅ 𝐿
𝑎

 
(3) 

 

The opening time is usually not provided by the 

manufacturer and can only be measured if the safety 

valve is connected to a system. To avoid this, various 

empirical correlations exist for the determination of 

the opening time [8]. 

2.2 Description of models 

The improved surge model is based on limiting 

the initial Joukowsky wave of the opening to the 

difference between the set pressure and the 

blowdown. This is done by rearranging the terms 

found in Eqs. (2) and (3) to solve for the initial inlet 

line length. The model also provides an empirical 

method of calculating the opening time, which as 
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mentioned previously is not available in 

manufacturer catalogues. 

The simple force balance method is based on 

calculating the pressures acting on the safety valve 

disk and comparing them to the blowdown pressure. 

Reaching the blowdown pressure, the valve is 

assumed to close. The included pressures are the set 

pressure, the back pressure, the pressure loss in the 

inlet line due to friction, and the wave pressure 

traveling through the inlet line with the speed of 

sound. As such, it includes more variables than the 

improved surge model, but as the wave pressure is 

significantly larger than the pressure loss, it is the 

more important factor in the stability, leading to both 

models dependent just on the initial wave, i.e., 

neglecting the frictional losses. 

The Izuchi model is based upon on the wave 

equation for the pressure change in the inlet line, 

while neglecting the effects of the friction in the inlet 

line, and assuming the system is undamped. Based 

on this equation, combined with the spring-mass-

damper equation seen in Eq. (1), a transfer function 

is created for the movement of internals in the safety 

valve. This transfer function is then used for a 

traditional stability analysis. The final formulation of 

the Izuchi equation published in [13] is: 

 

𝐿 =
𝜋𝑎

2𝜔𝑛√
𝑥 + 𝑥0

𝑥

 
(4) 

 

where 𝜔𝑛 is the natural frequency of the safety 

valve, calculated as the square root of the spring 

stiffness divided by the mass considered to be 

moving. The lift of the safety valve is an input 

leading to an increasing maximum length with 

increasing lift. The lift is either calculated by 

assuming that the safety valve is stable, with the fluid 

force in Eq. (1) being in balance with the spring 

forces, or a full lift is assumed.  

The quarter wave model has formulations of 

various complexity. Taking one that does not take 

into account the friction loss in the inlet line, and also 

assumes the system has no damping (which are 

assumptions shared with Izuchi), the following 

closed form equation can be derived: 

 

𝐿 =
𝜋𝑎

2𝜔𝑛√2 ⋅
𝑥 + 𝑥0

𝑥
+ 1

 
(5) 

 

Note that even though the initial idea is different, 

the final forms of the equations are similar, only 

differing in constants in the divisor. This means that 

of these two models the quarter wave model will 

always predict a shorter allowable inlet line length. 

3. CHANGES IN THE FLUID FORCE 

The fluid force acting on the valve disk is 

changing during the opening of the safety valve and 

is the source of the pop opening of the safety valve. 

This variable is however otherwise not explicitly 

included in the models listed previously. 

This means that the fluid force of Eq. (1) is not a 

constant force but varies during the opening of the 

safety valve. The change in fluid force is 

experimentally proven to be dependent on the valve 

type (e.g., disk geometry), the valve lift and as a 

minor effect on the pressure in the vessel and fluid 

properties. Physically, it is expected to be affected by 

the spindle friction, flow separation below the valve 

disk, fluid contraction and redirection within the 

valve, deflection angle of the fluid at the valve disk, 

turbulence and vortex creation in the valve housing 

and several other parameters. 

Simplifying the effects on the fluid force, two 

main models of describing the change in force exist, 

the discharge angle and the effective area. 

In the discharge angle model, the changes due to 

flow separation, contraction and redirection are 

modelled by an average angle representing the fluid 

force acting on the lower side of the disk. Such 

definitions of force were used by Singh [7], and most 

recently Darby [5], though with slightly different 

formulations. Using the formulation of Darby, the 

equation for the fluid force is described as: 

 

𝐹𝑓 = (𝑝𝑖𝑛 − 𝑝𝑏𝑎𝑐𝑘) ⋅ 𝐴𝑛 + 

             + 𝑚̇2  (
𝑠𝑖𝑛(Θ)

𝜌𝜋(𝑥 − 𝑥0)
+

1

𝜌 ⋅ 𝐴𝑓𝑎𝑐𝑒

) 
(6) 

 

where Θ is the angle between the horizontal and the 

direction of the fluid,  𝐴𝑛 is cross sectional area of 

the nozzle, and 𝐴𝑓𝑎𝑐𝑒  the area is the downward facing 

side of the valve disk, 

To increase the precision of the model, a linear 

change in the discharge angle with valve lift is 

assumed, where the current angle can be calculated 

as a linear interpolation between the angles when the 

valve is closed and is fully open 

 

Θ(𝑥) = Θ𝑐𝑙𝑜𝑠𝑒𝑑 +
𝑥

𝑥𝑚𝑎𝑥
⋅ (Θ𝑜𝑝𝑒𝑛 − Θclosed) (7) 

 

With this linear correlation for the angle the 

correlation between the force and the lift is a part of 

a sinusoidal curve. 

Another option is to define the force simply as 

the pressure difference between the pressures at the 

inlet and the outlet of the safety valve acting on a 

theoretical, so-called effective area. In this case the 

fluid force is defined as: 

 

𝐹𝑓 = 𝐴𝑒𝑓𝑓(𝑥) ⋅ (𝑝𝑖𝑛 − 𝑝𝑜𝑢𝑡) (8) 

 

with the effective area usually only considered 

dependent on the current position of the valve disk. 

To simplify comparisons, the effective area is often 

converted to a dimensionless variable by dividing it 

by the flow area of the nozzle: 
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𝐴̂𝑒𝑓𝑓(𝑥) =
𝐴𝑒𝑓𝑓(𝑥)

𝐴𝑛

 (9) 

 

Herewith, relative effective areas are 

independent of the size of the safety valve. 

The effective area contains all parameters not 

covered by the 1D ideal spring-mass system 

equation, as described above. Both the pressures, and 

the force acting on the disk can be directly measured, 

and hence the effective area may be deduced from 

experiments – at least under steady conditions. 

Generally, this are global measurements where the 

parameter affecting the relative effective area 

covered only implicitly.  

An advantage of the model is that to calculate the 

lift of the stable solution, a single-variate ordinary 

equation can be written for the lift, by combining Eq. 

(1) in steady state with Eq. (8). 

The relative effective area curve always starts at 

one as it is assumed that when the valve is closed, the 

forces directly act on the closed disk. To ensure a pop 

open, all other values of an effective area curve are 

taken larger than unity. 

3.1. Measurements of the changing fluid 
force 

An average discharge angle of the fluid below 

the valve disk is not provided by the manufacturers 

of safety valves. In the literature, such values were 

determined in dynamic experiments by Darby [15]. 

In his measurements, the Θ𝑐𝑙𝑜𝑠𝑒  and Θ𝑜𝑝𝑒𝑛 angles 

were obtained by fitting the measurement results to 

the equations, and assuming a linear change in 

discharge angle seen in Eq. (3). 

As it can be seen in a visualisation of Darby’s 

published measurement data [16] in Figure 1, the 

results are not conclusive, with the opening and 

closing angles being dependent not only on the set 

pressure, but also e.g. on the inlet line length. 

This shows that the discharge angle varies with 

multiple parameters and is difficult for define for 

every specific valve size and type. Predictions, 

without a fit to measured values are not feasible. 

The effective area is not included in the 

catalogues provided by the manufacturers, and there 

are few examples ([12],[13], [14]) in literature of it 

being depicted from experiments or simulated. 

The earliest experimental determination of the 

effective area conducted by Kastor. A linear equation 

for the effective area was provided by the author in 

the appendix, along with the raw measurement data. 

Visualising the results, there is no real correlation, 

and the best linear fit had an 𝑅2 = 0,072 error. This 

resulted in the author not using the linear fit due to 

its low accuracy, and instead opted for a constant 

value in their calculations. 

 

Figure 1. Discharge angles measured by Darby 

[16] 

Izuchi [17] conducted his measurements with a 

removed spring, and a force measurement to 

determine the force acting on the disk, at fixed 

heights. The measurements were repeated with 

different fittings at the outlet of the safety valve, 

finding that the curve was highly dependent on the 

outlet size, with the effective area going below a 

value of one in case of large reducers. 

Similar measurements [18] have also been 

conducted by the authors the at the CSE Test Loop 

on a DN25x40 European safety valve, using air as 

test fluid. In this these measurements, two set 

pressures (2 bar(g) and 10 bar(g)) and various 

backpressures, up to 60% of the set pressure were 

tested, going even beyond the back pressure allowed 

by the manufacturer. 

 

Figure 2. Effective area values measured at the 

CSE with different set and back pressures 
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The measurements were conducted with a steady 

flow, and a fixed lift of the valve disk, with the spring 

being removed, and replaced by a force sensor. It 

should be noted that during these kinds of 

measurements, the setup makes it impossible to 

measure the average fluid force at full lift, including 

the force acting on top of the disk in the valve 

housing. 

In the measurements it was found that the 

effective area curve of the system developed from 

measurements was independent of both the back 

pressure of the system, and the set pressure, as the 

relative errors compared to the fitted curve lay below 

16%, and the average error was below 10%. Some 

representative measurement data, along with the 

linear fit of the results can be seen in Figure 2. 

The measurement results also line up with 

simple static, two-dimensional CFD simulations [19] 

conducted on the same valve geometry. Example 

results for simulations with different back pressures 

at 10 bar(g) set pressure can be seen in Figure 3, 

along with a second order fit. These simulations 

show good correlation with the measured results and 

were not dependent on the pressures the simulations 

conducted at. This is in line with the findings of Hős, 

who also had low variance in the effective area 

curves in his simulations. 

None of the measurements or simulations of the 

effective area were conducted with a moving disk. 

This means that the measured values are possibly 

only approximations compared to a moving valve, as 

it could also be affected by other parameters, such as 

the speed of the disk. Further measurements need to 

be conducted to determine if the measurements with 

a fixed lift and a load cell are representative of the 

fluid force.  

 

Figure 3. Results of two-dimensional CFD 

simulations with 10 bar(g) set pressure compared 

to the curve fitted on measurement values 

As the effective area is more easily reproducible 

by measurements, and it has been used by authors 

whose models are being compared, it will be used 

further on as the model for the changing force of the 

fluid. 

3.2. Effects of the changing fluid force 
on stability models 

The change in fluid force depends mainly on two 

contradicting parameters - the enlargement of the 

area where the pressure acts on while opening the 

valve, and the decrease of the pressure below and the 

increase above the valve disk. At the beginning of the 

valve opening, the pressure decrease is dominating, 

hence, the fluid force typically decreases. With 

further increasing lift, the area increase becomes 

dominate and lead to larger fluid forces with lift. 

Typically, a fluid force curve is a 90° turned “s”-

shaped to allow for an initially stable, proportional 

opening of the valve, where mainly spring and fluid 

forces are in equilibrium. Further opening to the so-

called pop-point of the valve would lead to a 

tremendous excess force compared to the spring and 

a non-equilibrium of the forces pushing the valve 

disk to open. The acceleration of the moving masses 

in the valve heavily depends on the amount of excess 

force above the pop-point. The disk typically moves 

up either to a lift where forces become equal or to a 

geometrical lift limit, where the valve stays open. In 

case of a stable open of a safety valve, that is not at 

full lift, these fluid forces are in equilibrium with the 

spring force acting on the valve disk. Therefore, to 

properly predict the lift of a safety valve, it is 

important to know the forces acting on the valve 

disk. 
In case the fluid force is calculated by the 

effective area model in a safety valve model, the 

relative effective area used must have values above 

one to explain the phenomena described in the 

previous paragraph. Calculating the opening with an 

effective area that is smaller than in reality would 

result in a partial opening of the safety valve. 

The lift is a direct input for the Izuchi and 

quarter wave models, and as such the change of fluid 

force needs to be taken into account to determine this 

input parameter. An input of a smaller lift with these 

models predicts a shorter inlet line, meaning that 

using the maximum lift would not be conservative. 

During the derivation of both models, the 

effective area was included during the initial phase 

of the derivations but was later simplified out. This 

means that both models can be revisited to include 

the relative effective area curves not just in the lift, 

but also as an input in itself. The Izuchi formulation 

in this case takes the form of: 

 

𝐿 =
𝜋𝑎

2𝜔𝑛
√𝑥 + 𝑥0

𝑥
+ 1 −

𝜕𝐴̂𝑒𝑓𝑓(𝑥) 
𝜕𝑥

⋅ 𝑥

 

(10) 
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The original paper [13] does not explain the 

reason for not including the additional term 

compared to Eq. (4). According to both personal 

correspondence with Izuchi, and the white paper of 

Melhem [20], the reason for the simplification was 

that the effective area curves were of a shape that the 
𝜕𝐴𝑒𝑓𝑓 

𝜕𝑥
⋅ 𝑥 part was close to unity at the full lift of the 

valve, allowing for a simplification of the equation. 

During the derivation of the final formula of the 

quarter wave model shown in Eq. (5), the relative 

effective area was assumed to be equal to one, 

simplifying the calculations, which would not 

explain a real pop open of a valve. In case of 

continuing the derivation without this simplification, 

one arrives at the solution: 

 

𝐿 =
𝜋𝑎

2𝜔𝑛√2 ⋅
𝑥 + 𝑥0

𝑥
⋅ 𝐴̂𝑒𝑓𝑓 + 1

 
(11) 

 

Note that the two calculation methods, even 

though they used the same inputs in their simpler 

forms, they use the effective area curves differently, 

with the Izuchi model using the derivative, and the 

quarter wave using the actual value.  

To investigate the theoretical effects of the 

effective area on the calculated stability of safety 

valves, one-dimensional CFD simulations with 

various constant 𝐴̂𝑒𝑓𝑓 values ranging from 1.0 to 2.0 

were carried out. The CFD simulations represent an 

precise solution of an ideal system without the 

simplifications made in the different models and may 

be taken to evaluate the assumptions and 

simplifications implicitly given in the models and 

also in the expended models seen in equations (10) 

and (11).  

The CFD simulations were based on ideal gas 

with friction, using a Lax-Wendroff solver in the 

inlet line. The safety valve was modelled by solving 

Eq. (1) with a variable step Runge-Kutta method, and 

the fluid force was calculated using the effective area 

as described in Eq. (8). Choking was assumed in the 

smallest cross section in the safety valve to calculate 

the mass flow leaving the system. The vessel 

pressure was kept constant during the simulations. 

Inlet line friction was neglected. 

The tested valve was a DN50x80 valve from a 

European manufacturer, with a nozzle diameter of 46 

mm, and a maximum lift of 15.5 mm. This valve had 

been previously measured at the CSE Institute, and 

had allowable measurement length results for 

comparison [21], having started to chatter with an 

inlet line length of one meter. The released fluid was 

air at 5.8 bar(g) and 300 K.  

The CFD simulations were run in 5-centimetre 

steps between 0.4 and 1.4 meters of inlet line length. 

As some simulations might be stable, even if a 

simulation with a lower line length was unstable, all 

simulation results are plotted, with the stable and 

unstable simulations being marked separately, a red 

plus, and a green x respectively. 

The simulation results are compared against the 

compared to the expanded Izuchi and quarter wave 

models described in Eqs.(10) and (11). The lift as an 

input for these cases was calculated with the vessel 

pressure to keep with the assumption of the models 

regarding the lack of friction in the inlet line. 

The results of the comparison can be seen in 

Figure 4. The simulations show that in case of a 

relative effective area of 1.6 and 1.8, there is an area 

of instability, but higher inlet line lengths were 

simulated as stable. Full lift was reached with a 

relative effective area of 1.8. This influenced the 

inlet line lengths calculated from the expanded Izuchi 

and quarter wave models. It is also the reason for the 

increase in the permissible inlet line in case of 

effective areas below 1.8, following the simulated 

trend. 

After the full lift was reached, the predicted inlet 

line length of quarter wave model was decreasing as 

the effective area appears in the divisor for this 

model. This highlights, that even after reaching full 

lift, the chosen effective area model does have an 

effect on the allowable inlet line length predicted by 

the model. 

 

Figure 4. The allowable inlet lines according to 

the Izuchi and QWM models compared to one-

dimensional simulations, with a constant effective 

area 

To test the effect of different effective area 

curves, simulations and calculations with a constant 

effective area slope were also conducted, with the 

relative effective area curve taking the form:  

 

𝐴̂𝑒𝑓𝑓(𝑥) = 1.0 + 𝑠𝑙𝑜𝑝𝑒 ⋅
𝑥

𝑥𝑚𝑎𝑥

 (12) 

 

The slopes tested ranged from 0, to 1.0, meaning 

that the maximum dimensionless effective areas 
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ranged between 1.0 and 2.2, covering the same range 

as the constant effective areas in the simulations 

shown in Fig. 4. The maximum lift was reached with 

a slope of 0.8, after which the lift for the models was 

taken as the maximum available lift. The results of 

the simulations and the extended Izuchi and quarter 

wave models with an effective area changing linearly 

can be seen in Figure 5. 

Noticeably, in this case, there are no simulations 

that predicted stable valve movement when a 

simulation with a smaller inlet line length predicted 

instability. The trends are similar as with the constant 

inlet line lengths, with larger effective areas meaning 

a stabler opening. 

Note that in this case, both models predicted a 

lower allowable inlet line length as the maximum 

opening was reached. As the derivative of the 

effective area curve being calculated was positive, 

not only the quarter wave but also the Izuchi model 

decreased by higher effective areas, which appeared 

after full lift was reached. 

The simple force balance, pressure surge models 

and the three percent rule were not compared to the 

simulations. These models evaluate the stability 

based on empirical relations at the nominal lift given 

by the manufacturer or are experimentally evidenced 

conventions like the three precent rule. A true lift 

based on the force balance on the valve disk is not 

considered. 

 

Figure 5. The allowable inlet lines according to 

the Izuchi and QWM models compared to one-

dimensional simulations, with a linearly changing 

effective area 

The results show that in general, a larger 

effective area increased the stability of the calculated 

system in the case of both the constant and the 

linearly changing effective area. This was the case 

even if full lift was reached, as the effective area or 

its derivative appear in the quarter wave and the 

Izuchi models respectively.  

Looking at Figs. 4 and 5 in both cases the 

minimum length is reached at a constant relative 

effective area of one. In this case, the expanded 

Izuchi model would take a form similar to the one 

published in [13], but have an additional term of plus 

one under the square root in the divisor, predicting a 

lower inlet line length than the currently published 

model. In the case of a constant effective area of one, 

the quarter wave model would be unchanged, 

resulting in only one constant multiplicator 

difference for the two models. 

Note however, that a relative effective area of 

constant one does not guarantee that the minimum 

predicted allowable inlet line length of the models 

will be minimal, that is also dependent on other 

parameters of the system such as the maximum lift, 

the set pressure and the spring stiffness. These results 

show that the effective area is a parameter that needs 

to be taken into account before calculating using 

these methods. 

4. CONCLUSIONS  

Four different categories of models have been 

introduced, with the classification based on the initial 

assumptions of the authors of models. A 

representative example of all four models has been 

sought out, and their working methods compared, 

highlighting the differences in their approaches. 

The change in fluid force during the opening was 

introduced and shown to be a necessary component 

of the operation of pop open safety valves. Only 

three independent effective area measurements were 

found in literature however, and as such the 

parameter is deemed to be under investigated, and its 

dependencies on factors other than the lift have not 

been fully examined. 

The ways it can affect the various stability 

models has been shown. The results showed that the 

simple force balance, improved pressure surge and 

the three-percent rule are all unaffected in their 

current formulations, as in the models a full lift is 

assumed during the calculation of the stability 

criterion. 

The Izuchi and quarter wave however use the lift 

of the safety valve as an input parameter. Therefore, 

these models were expanded from their derivations 

to include the effective area, and using these forms, 

the effect of the effective area on their predictions 

were calculated and were compared to one-

dimensional CFD simulations. The expansion of the 

Izuchi and quarter wave models managed to follow 

the trends that were simulated. These simulations 

have also shown that the effective area influences the 

calculated stability of the safety valve,  

As such it can be determined that the changes in 

fluid force cannot be neglected and needs to be taken 

into account for the predictions to be precise. Further 

measurements are needed to determine if the 

effective area is dependent upon other parameters as 

well, or only the lift as it is currently assumed. 
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